Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-dh8gc Total loading time: 0 Render date: 2024-11-10T02:24:56.224Z Has data issue: false hasContentIssue false

8 - Results of geophysical surveys on Kasprowy Wierch, the Tatra Mountains, Poland

Published online by Cambridge University Press:  22 August 2009

C. Hauck
Affiliation:
Université de Fribourg, Switzerland
C. Kneisel
Affiliation:
University of Würzburg, Germany
Get access

Summary

Introduction

Geophysical surveys are more and more commonly used for the investigation of both permafrost features and their changes in high mountain environments. Before the rebuilding of the cable railway on Kasprowy Wierch, Tatra Mountains, Poland, geophysical techniques were applied to determine the ground conditions of the planned construction site. The survey results were used to prepare a geotechnical expert report for the reconstruction of the upper section of the cable railway. This contribution aims to show the possibilities, limitations and ways of interpreting the geophysical measurements obtained in a mountainous periglacial environment within the zone of discontinuous permafrost.

Field site

Kasprowy Wierch is a peak in the main ridge of the Tatra Mountains (Figure 8.1), 1986 m a.s.l. It consists of granodiorite and pegmatites, which form a tectonic cap-rock on the summit with a thickness of a few hundred metres (Bac-Moszaszwili and Gąsienica-Szostak1990). Faults and fractures can be seen in the dome. Although the area of the Tatra Mountains was glaciated several times (Gadek 1998), the peak was transformed by periglacial processes only (Klimaszewski 1988), which led to the creation of block fields on the dome. The thickness of the weathered material reaches 3–4 m (Gryczmanski et al. 2004). In contrast to the peak, all adjacent valleys were glaciated. Distinct glacial undercutting rock faces are visible on the northern part of the peak (Figure 8.2). Kasprowy Wierch is the only mountain in the Polish Tatra Mountains so extensively used by people.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bac-Moszaszwili, M. and Gąsienica-Szostak, M. (1990). Tatry Polskie przewodnik Geologiczny dla Turystów. Wydawnictwa Geologiczne, Warszawa.Google Scholar
Barsch, D. and King, L. (1989). Origin and geoelectrical resistivity of rock glaciers in semi-arid subtropical mountains (Andes of Mendoza, Argentina). Zeitschrift für Geomorphologie, Supplement, 33(2), 151–163.Google Scholar
Claerbout, J. F. and Muir, F. (1973). Robust modeling with erratic data. Geophysics, 38, 826–844.CrossRefGoogle Scholar
deGroot-Hedlin, C. and Constable, S. (1990). Occam's inversion to generate smooth two-dimensional models from magnetotelluric data. Geophysics, 55, 1613–1624.CrossRefGoogle Scholar
Dobinski, W. (1997). Distribution of mountain permafrost in the High Tatras based on freezing and thawing indices. Biuletyn Peryglacjalny, 36, 29–37.Google Scholar
Dobinski, W. (2004a). Granica występowania wieloletniej zmarzliny w Tatrach. Czasopismo Geograficzne, 75(1–2), 123–132.Google Scholar
Dobinski, W. (2004b). Wieloletnia zmarzlina w Tatrach: geneza, cechy, ewolucja. Przegląd Geograficzny, 76, 327–343.Google Scholar
Etzelmüller, B., Berthling, I. and Sollid, J. L. (1998). The distribution of permafrost in southern Norway – a GIS approach. Proceedings of the 7th International Conference on Permafrost, Yellowknife, Canada, 251–257.Google Scholar
Etzelmüller, B., Hoelzle, M., Solbjørg Flo Heggem, E., Isaksen, K., Mittaz, C., Vonder Mühll, D., Ødegard, R. S., Haeberli, W. and Sollid, J. L. (2001). Mapping and modelling the occurence and distribution of mountain permafrost. Norsk Geografisk Tidsskrift, 55, 186–194.Google Scholar
Evin, M. and Fabre, D. (1990). The distribution of permafrost in rock glaciers of the southern Alps (France). Geomorphology, 3, 57–71.CrossRefGoogle Scholar
Gadek, B. (1998). Würmskie zlodowacenie Tatr w świetle rekonstrukcji lodowców wybranych dolin na podstawie prawidłowości glacjologicznych. Wydawnictwo Uniwersytetu Ślaskiego, Katowice.Google Scholar
Gryczmanski, M., Dobinski, W. and Sołowski, W. (2004). Ekspertyza geotechniczna dla potrzeb przebudowy kolei linowej na Kasprowy Wierch (odcinek Myślenickie Turnie – Kasprowy Wierch). Instytut Systemów Przestrzennych i Katastralnych, Gliwice.Google Scholar
Haeberli, W. (1973). Die Basis-Temperatur der winterlichen Schneedecke als moglicher indikator für die Verbreitung von permafrost in den Alpen. Zeitschrift für Gletscherkunde und Glazialgeologie, 9(1–2), 221–227.Google Scholar
Haeberli, W. (1985). Creep of Mountain Permafrost: Internal Structure and Flow of Alpine Rock Glaciers. Mitteilungen der Versuchsanstalt für Wasserbau, Hydrologie und Glaziologie, 77, 143pp.Google Scholar
Hauck, C., Guglielmin, M., Isaksen, K. and Vonder Mühll, D. (2001). Applicability of frequency-domain and time-domain electromagnetic methods for mountain permafrost studies. Permafrost and Periglacial Processes, 12, 39–52.CrossRefGoogle Scholar
Hess, M. (1974). Piętra klimatyczne Tatr. Czasopismo Geograficzne, 45(1), 75–93.Google Scholar
Jahn, A. (1970). Zagadnienia Strefy Peryglacjalnej. PWN Warszawa.Google Scholar
Kedzia, S., Moscicki, J. and Wrobel, A. (1998). Studies on the occurence of permafrost in Kozia Valley (the High Tatra Mts.). Wyprawy Geograficzne na Spitsbergen, IV Zjazd Geomorfologów Polskich UMCS, Lublin 3-6 Czerwca 1998, 51–57.
Klimaszewski, M. (1988). Rzeźba Tatr Polskich. PWN Warszawa.Google Scholar
Kneisel, C. (2003). Permafrost in recently deglaciated glacier forefields – measurements and observations in the eastern Swiss Alps and northern Sweden. Zeitschrift für Geomorphologie, 47, 289–305.Google Scholar
Kneisel, C. (2006). Assessment of subsurface lithology in mountain environments using 2D resistivity imaging. Geomorphology, 80, 32–44.CrossRefGoogle Scholar
Kneisel, C. and Hauck, C. (2003). Multi-method geophysical investigation of a sporadic permafrost occurence. Zeitschrift für Geomorphologie, Supplement, 132, 145–159.
Vonder Mühll, D. (1993). Geophysikalische Untersuchen im Permafrost des Oberengadins. Mitteilungen der Versuchsanstalt für Wasserbau, Hydrologie und Glaziologie, 122, 222pp.Google Scholar
Vonder Mühll, D., Hauck, C., Gubler, H., McDonald, R. and Russill, N. (2001). New geophysical methods of investigating the nature and distribution of mountain permafrost with special reference to radiometry techniques. Permafrost and Periglacial Processes, 12(1), 27–38.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×