Book contents
- Frontmatter
- Contents
- List of figures and tables
- List of contributors
- Editors' introduction
- 1 An introduction to differential geometry in econometrics
- 2 Nested models, orthogonal projection and encompassing
- 3 Exact properties of the maximum likelihood estimator in exponential regression models: a differential geometric approach
- 4 Empirical likelihood estimation and inference
- 5 Efficiency and robustness in a geometrical perspective
- 6 Measuring earnings differentials with frontier functions and Rao distances
- 7 First-order optimal predictive densities
- 8 An alternative comparison of classical tests: assessing the effects of curvature
- 9 Testing for unit roots in AR and MA models
- 10 An elementary account of Amari's expected geometry
- Index
2 - Nested models, orthogonal projection and encompassing
Published online by Cambridge University Press: 09 March 2010
- Frontmatter
- Contents
- List of figures and tables
- List of contributors
- Editors' introduction
- 1 An introduction to differential geometry in econometrics
- 2 Nested models, orthogonal projection and encompassing
- 3 Exact properties of the maximum likelihood estimator in exponential regression models: a differential geometric approach
- 4 Empirical likelihood estimation and inference
- 5 Efficiency and robustness in a geometrical perspective
- 6 Measuring earnings differentials with frontier functions and Rao distances
- 7 First-order optimal predictive densities
- 8 An alternative comparison of classical tests: assessing the effects of curvature
- 9 Testing for unit roots in AR and MA models
- 10 An elementary account of Amari's expected geometry
- Index
Summary
Introduction
An important objective in econometric modelling is to obtain congruent and encompassing models, which are thus consistent with data evidence and economic theory, and are capable of explaining the behaviour of rival models for the same economic phenomena. Hendry (1995) and Mizon (1995b) inter alia present this view of modelling, as well as recording that a general-to-simple modelling strategy is an efficient way to isolate congruent models. Indeed such a modelling strategy requires the models under consideration to be thoroughly tested and progressively evaluated within a sequence of nested hypotheses, so that each model not rejected in the process is a valid simplification of (i.e. parsimoniously encompasses) all models more general than it in the sequence. Models arrived at as the limit of the reduction process therefore contain all relevant information available in the initial models, thus rendering the latter inferentially redundant. Testing the ability of models to parsimoniously encompass more general ones, thus ensuring that no information is lost in the reduction process, creates a partially ordered sequence of models. Further, Lu and Mizon (1997) point out that the intermediate models considered while testing the parsimonious encompassing ability of models in a nested sequence are mutually encompassing models and hence observationally equivalent to each other. Note, though, that there is an important distinction between observational equivalence in the population and in a sample, which may contain weak evidence.
- Type
- Chapter
- Information
- Applications of Differential Geometry to Econometrics , pp. 64 - 84Publisher: Cambridge University PressPrint publication year: 2000
- 2
- Cited by