from Part III - ‘Solid’ Earth Applications: From the Surface to the Core
Published online by Cambridge University Press: 20 June 2023
Abstract: In this chapter, I present an overview of waveform tomography, in the context of imaging of the Earth‘s whole mantle at the global scale. In this context, waveform tomography is defined utilising entire wide-band filtered records of the seismic wavefield, generated by natural earthquakes and observed at broadband receivers located at teleseismic distances. This is in contrast to imaging methodologies that first extract secondary observables, such as, most commonly, travel times of the most prominent energy arrivals (i.e. seismic phases), that can be easily identified and isolated in the records. Waveform tomography is a non-linear process that requires the ability to compute the predicted wavefield in a given three-dimensional Earth model and compare it to the observed wavefield. One of its main challenges, is the computational cost involved. I first review the history of methodological developments, specifically focusing on the global, whole mantle Earth imaging problem. I then discuss and contrast the two recent methodologies that have led to the development of the first three-dimensional elastic global shear velocity models that have been published to-date using numerical integration of the wave equation, specifically, using the spectral element method. I discuss how the forward problem is addressed, the data selection approaches, definitions of the misfit function, and computation of kernels for the inverse step of the imaging procedure, as well as the choice of the optimisation method. I also discuss model parametrisation, and, in particular, the important topic of how the strongly heterogeneous crust is modelled. In the final parts of this chapter, I discuss efforts towards resolving the difficult problem of model evaluation and present my views on promising directions and remaining challenges in this rapidly evolving field, aiming at further improving resolution of deep mantle elastic structure with the goal of informing our understanding of the dynamics of our planet.
To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.