Book contents
- Frontmatter
- Contents
- List of contributors
- Preface
- Adaptation of biological membranes to temperature: biophysical perspectives and molecular mechanisms
- Temperature adaptation: molecular aspects
- Stenotherms and eurytherms: mechanisms establishing thermal optima and tolerance ranges
- Ecological and evolutionary physiology of stress proteins and the stress response: the Drosophila melanogaster model
- Temperature adaptation and genetic polymorphism in aquatic animals
- Phenotypic plasticity and evolutionary adaptations of mitochondria to temperature
- Temperature and ontogeny in ectotherms: muscle phenotype in fish
- Ectotherm life-history responses to developmental temperature
- Testing evolutionary hypotheses of acclimation
- Experimental investigations of evolutionary adaptation to temperature
- Thermal evolution of ectotherm body size: why get big in the cold?
- Physiological correlates of daily torpor in hummingbirds
- Development of thermoregulation in birds: physiology, interspecific variation and adaptation to climate
- Evolution of endothermy in mammals, birds and their ancestors
- The influence of climate change on the distribution and evolution of organisms
- Index
Experimental investigations of evolutionary adaptation to temperature
Published online by Cambridge University Press: 04 May 2010
- Frontmatter
- Contents
- List of contributors
- Preface
- Adaptation of biological membranes to temperature: biophysical perspectives and molecular mechanisms
- Temperature adaptation: molecular aspects
- Stenotherms and eurytherms: mechanisms establishing thermal optima and tolerance ranges
- Ecological and evolutionary physiology of stress proteins and the stress response: the Drosophila melanogaster model
- Temperature adaptation and genetic polymorphism in aquatic animals
- Phenotypic plasticity and evolutionary adaptations of mitochondria to temperature
- Temperature and ontogeny in ectotherms: muscle phenotype in fish
- Ectotherm life-history responses to developmental temperature
- Testing evolutionary hypotheses of acclimation
- Experimental investigations of evolutionary adaptation to temperature
- Thermal evolution of ectotherm body size: why get big in the cold?
- Physiological correlates of daily torpor in hummingbirds
- Development of thermoregulation in birds: physiology, interspecific variation and adaptation to climate
- Evolution of endothermy in mammals, birds and their ancestors
- The influence of climate change on the distribution and evolution of organisms
- Index
Summary
Comparative and experimental studies of adaptation
Comparative and experimental analysis
Organismal biologists employ two principal methods in their investigation of the natural world: comparison and experiment. The latter is most familiar in the context of laboratory investigations of functional mechanisms. Experiment is the classic application of the scientific method, including such elements as rigorous and replicated design, controlled manipulation of a single variable of interest and the incorporation of a control group into the study. While experimental science has been crucial to our understanding of how organisms work, to date it has had relatively less application in studying how those organisms came to be the way they are, i.e. in studies of the evolution of organismal characters. In such evolutionary studies, comparative investigations have been by far the dominant methodological tradition.
In the study of evolutionary adaptation to temperature, for example, virtually all our knowledge is derived from comparative studies of different populations, species, or other taxa inhabiting different thermal environments (for reviews, see Precht et al., 1973; Prosser, 1973; Hochachka & Somero, 1984; Cossins & Bowler, 1987). The comparative approach involves the measurement of a character and its correlation with environmental temperature. If the character (e.g. a rate process) is thermally dependent, then it is measured either over a similar range of temperatures or at a single temperature common to the different groups examined. The pattern of character on environmental temperature is then analysed and interpreted, most frequently in an adaptive context (Prosser, 1986; Cossins & Bowler, 1987; Bennett, 1996), and compared with the pattern found for other biological systems inhabiting similar thermal environments.
- Type
- Chapter
- Information
- Animals and TemperaturePhenotypic and Evolutionary Adaptation, pp. 239 - 264Publisher: Cambridge University PressPrint publication year: 1996
- 7
- Cited by