Skip to main content Accessibility help
×
Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-26T03:02:52.368Z Has data issue: false hasContentIssue false

Chapter 1 - Physiology of Pregnancy

from Section 1

Published online by Cambridge University Press:  19 November 2021

Olutoyin A. Olutoye
Affiliation:
Ann & Robert H. Lurie Children's Hospital of Chicago, Illinois
Get access

Summary

The pregnant patient may present for fetal intervention at any time from the second trimester until near delivery. Physiological changes of pregnancy occur in every organ system in a dynamic fashion, with changes occurring to different degrees at specific periods during gestation. The maternal-fetal anesthesiologist must be familiar with expected changes. The decrease in diastolic pressure and mean arterial pressure, which nadir in the second trimester, often need to be addressed during mid-gestation fetal interventions. Other changes may need to be addressed earlier than typically expected during pregnancy. For example, the pregnant patient’s airway is characterized by mucosal edema and the need for a smaller than expected endotracheal tube. This is typically of concern at the time of delivery or non-obstetric surgery if endotracheal intubation is required. As the majority of fetal intervention procedures are performed during the mid-gestation period, the maternal-fetal anesthesiologist is often faced with managing the pregnant airway, not uncommonly in rapidly changing situations as planned sedation may be converted to general anesthesia for a variety of reasons during the procedure. All the physiologic changes of pregnancy are important to keep in mind as one approaches the clinical care of the pregnant patient.

Type
Chapter
Information
Anesthesia for Maternal-Fetal Surgery
Concepts and Clinical Practice
, pp. 1 - 16
Publisher: Cambridge University Press
Print publication year: 2021

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Robson, SC, Dunlop, W, Moore, M, Hunter, S. Combined Doppler and echocardiographic measurement of cardiac output: theory and application in pregnancy. Br J Obstet Gynaecol. 1987;94(11):10141027. doi:10.1111/j.1471–0528.1987.tb02285.x.Google Scholar
Geva, T, Mauer, MB, Strikera, L, Kirshon, B, Pivarnik, JM. Effects of physiologic load of pregnancy on left ventricular contractility and remodeling. Am Heart J. 1997;133(1):5359. doi:10.1016/S0002–8703(97)70247–3.Google Scholar
Simmons, LA, Gillin, AG, Jeremy, RW. Structural and functional changes in left ventricle during normotensive and preeclamptic pregnancy. Am J Physiol Heart Circ Physiol. 2002;283(4):H16271633.Google Scholar
Melchiorre, K, Sharma, R, Thilaganathan, B. Cardiac structure and function in normal pregnancy. Curr Opin Obstet Gynecol. 2012;24(6):413421. doi:10.1097/GCO.0b013e328359826 f.Google Scholar
Vered, Z, Mark Poler, S, Gibson, P, Wlody, D, Pérez, JE. Noninvasive detection of the morphologic and hemodynamic changes during normal pregnancy. Clin Cardiol. 1991;14(4):327334. doi:10.1002/clc.4960140409.Google Scholar
Gilson, G, Samaan, S, Crawford, M, Quails, C, Curet, L. Changes in hemodynamics, ventricular remodeling, and ventricular contractility during normal pregnancy: A longitudinal study. Obstet Gynecol. 1997;89(6):957962. doi:10.1016/S0029–7844(97)85765–1.Google Scholar
Carruth, JE, Mirvis, SB, Brogan, DR, Wenger, NK. The electrocardiogram in normal pregnancy. Am Heart J. 1981;102(6):10751078. doi:10.1016/0002–8703(81)90497-X.Google Scholar
Oram, S, Holt, M. Innocent depression of the S-T segments and flattening of the T-wave during pregnancy. J Obstet Gynaecol Br Emp. 1961;68(5):765770. doi:10.1111/j.1471–0528.1961.tb02807.x.Google Scholar
Campos, O, Andrade, JL, Bocanegra, J, et al. Physiologic multivalvular regurgitation during pregnancy: a longitudinal Doppler echocardiographic study. Int J Cardiol. 1993;40(3):265272. doi:10.1016/0167–5273(93)90010-E.Google Scholar
Duvekot, JJ, Cheriex, EC, Pieters, FAA, Menheere, PPCA, Peeters, LLH. Early pregnancy changes in hemodynamics and volume homeostasis are consecutive adjustments triggered by a primary fall in systemic vascular tone. Am J Obstet Gynecol. 1993;169(6):13821392. doi:10.1016/0002–9378(93)90405–8.Google Scholar
Clapp, JF, Capeless, E. Cardiovascular function before, during, and after the first and subsequent pregnancies. Am J Cardiol. 1997;80(11):14691473. doi:10.1016/S0002–9149(97)00738–8.Google Scholar
Atkins, AFJ, Watt, JM, Milan, P, Davies, P, Crawford, JS. A longitudinal study of cardiovascular dynamic changes throughout pregnancy. Eur J Obstet Gynecol Reprod Biol. 1981;12(4):215224. doi:10.1016/0028–2243(81)90012–5.Google Scholar
Robson, SC, Hunter, S, Boys, RJ, Dunlop, W. Serial study of factors influencing changes in cardiac output during human pregnancy. Am J Physiol. 1989;256(4 Pt 2):H1060–1065.Google Scholar
Capeless, EL, Clapp, JF. Cardiovascular changes in early phase of pregnancy. Am J Obstet Gynecol. 1989;161(6):14491453. doi:10.1016/0002–9378(89)90902–2.Google Scholar
Rubler, S, Damani, PM, Pinto, ER. Cardiac size and performance during pregnancy estimated with echocardiography. Am J Cardiol. 1977;40(4):534540. doi:10.1016/0002–9149(77)90068–6.Google Scholar
Pöpping, DM, Elia, N, Marret, E, Wenk, M, Tramr, MR. Opioids added to local anesthetics for single-shot intrathecal anesthesia in patients undergoing minor surgery: A meta-analysis of randomized trials. Pain. 2012;153(4):784793. doi:10.1016/j.pain.2011.11.028.CrossRefGoogle ScholarPubMed
Laird-Meeter, K, van de Ley, G, Bom, TH, Wladimiroff, JW, Roelandt, J. Cardiocirculatory adjustments during pregnancy – An echocardiographic study. Clin Cardiol. 1979;2(5):328332. doi:10.1002/clc.4960020503.Google Scholar
Katz, R, Karliner, JS, Resnik, R. Effects of a natural volume overload state (pregnancy) on left ventricular performance in normal human subjects. Circulation. 1978;58(3):434441.Google Scholar
Clark, SL, Cotton, DB, Lee, W, et al. Central hemodynamic assessment of normal term pregnancy. Am J Obstet Gynecol. 1989;161(6):14391442. doi:10.1016/0002–9378(89)90900–9.Google Scholar
Assali, NS, Douglass, RA, Baird, WW, Nicholson, DB, Suyemoto, R. Measurement of uterine blood flow and uterine metabolism. Am J Obstet Gynecol. 1953;66(2):248253. doi:10.1016/0002–9378(53)90560–2.CrossRefGoogle ScholarPubMed
Thaler, I, Manor, D, Itskovitz, J, et al. Changes in uterine blood flow during human pregnancy. Am J Obstet Gynecol. 1990;162(1):121125. doi:10.1016/0002–9378(90)90834-T.CrossRefGoogle ScholarPubMed
Katz, M, Sokal, MM. Skin perfusion in pregnancy. Am J Obstet Gynecol. 1980;137(1):3033. doi:10.1016/0002–9378(80)90381–6.Google Scholar
Dunlop, W. Serial changes in renal haemodynamics during normal human pregnancy. Br J Obstet Gynaecol. 1981;88(1):19. doi:10.1111/j.1471–0528.1981.tb00929.x.Google Scholar
O’Day, MP. Cardio-respiratory physiological adaptation of pregnancy. Semin Perinatol. 1997;21(4):268275. doi:10.1016/S0146–0005(97)80069–9.Google Scholar
Macarthur, A, Riley, ET. Obstetric anesthesia controversies: vasopressor choice for postspinal hypotension during cesarean delivery. Int Anesthesiol Clin. 2007;45(1):115132. doi:10.1097/AIA.0b013e31802b8d53.Google Scholar
Dyer, RA, Reed, AR, van Dyk, D, et al. Hemodynamic effects of ephedrine, phenylephrine, and the coadministration of phenylephrine with oxytocin during spinal anesthesia for elective cesarean delivery. Anesthesiology. 2009;111(4):753765. doi:10.1097/ALN.0b013e3181b437e0.Google Scholar
Gaiser, R. Physiologic changes of pregnancy. In: Chestnut, D, ed. Chestnut’s Obstetric Anesthesia: Principles and Practice. Fifth ed. Philadelphia: Elsevier Saunders; 2014.Google Scholar
Gunderson, EP, Chiang, V, Lewis, CE, et al. Long-term blood pressure changes measured from before to after pregnancy relative to nonparous women. Obstet Gynecol. 2008;112(6):12941302. doi:10.1097/AOG.0b013e31818da09b.Google Scholar
Mabie, WC, DiSessa, TG, Crocker, LG, Sibai, BM, Arheart, KL. A longitudinal study of cardiac output in normal human pregnancy. Am J Obstet Gynecol. 1994;170(3):849856. doi:10.1016/S0002–9378(94)70297–7.Google Scholar
Report of the National High Blood Pressure Education Program Working Group on High Blood Pressure in Pregnancy. Am J Obstet Gynecol. 2000;183(1):s1s22. doi:10.1067/mob.2000.107928.Google Scholar
Ansari, I, Wallace, G, Clemetson, CAB, Mallikarjuneswara, VR, Clemetson, CD. Tilt caesarean section. J Obstet Gynaecol Br Commonw. 1970;77(8):713721. doi:10.1111/j.1471–0528.1970.tb03597.x.Google Scholar
Kinsella, SM. Lateral tilt for pregnant women: why 15 degrees? Anaesthesia. 2003;58(9):835836. doi:10.1046/j.1365–2044.2003.03397.x.Google Scholar
Abengochea, A, Morales-Roselló, J, Del Río-Vellosillo, M, Argente, P, Barberá, M. Effect of lateral tilt angle on the volume of the abdominal aorta and inferior vena cava in pregnant and nonpregnant women determined by magnetic resonance imaging. Anesthesiology. 2015;123(3):733734. doi:10.1097/ALN.0000000000000791.Google Scholar
Kjeldsen, J. Hemodynamic investigations during labour and delivery. Acta Obstet Gynecol Scand. 1979;58(89):218249.CrossRefGoogle Scholar
Kuhn, JC, Falk, RS, Langesæter, E. Haemodynamic changes during labour: continuous minimally invasive monitoring in 20 healthy parturients. Int J Obstet Anesth. 2017;31:7483. doi:10.1016/j.ijoa.2017.03.003.Google Scholar
Hendricks, CH. The hemodynamics of a uterine contraction. Am J Obstet Gynecol. 1958;76(5):969982. doi:10.1016/0002–9378(58)90181–9.Google Scholar
Adams, J, Alexander, A. Alterations in cardiovascular physiology during labor. Obstet Gynecol. 1958;12(5):542548.Google Scholar
Filippatos, G, Baltopoulos, G, Lazaris, D, et al. Cardiac output monitoring during vaginal delivery. J Obstet Gynaecol. 2009;17(3):270272.Google Scholar
Robson, SC, Dunlop, W, Boys, RJ, Hunter, S. Cardiac output during labour. Br Med J. 1987;295(6607).Google Scholar
Palanisamy, A, Mitani, AA, Tsen, LC. General anesthesia for cesarean delivery at a tertiary care hospital from 2000 to 2005: a retrospective analysis and 10-year update. Int J Obstet Anesth. 2011;20(1):1016. doi:10.1016/j.ijoa.2010.07.002.Google Scholar
Leontic, E. Respiratory disease in pregnancy. Med Clin North Am. 1977;61:111128.Google Scholar
Munnur, U, Suresh, MS. Airway problems in pregnancy. Crit Care Clin. 2004;20(4):617642. doi:10.1016/j.ccc.2004.05.011.Google Scholar
Wise, RA, Polito, AJ, Krishnan, V. Respiratory physiologic changes in pregnancy. Immunol Allergy Clin North Am. 2006;26(1):112. doi:10.1016/j.iac.2005.10.004.CrossRefGoogle ScholarPubMed
Contreras, G, Gutiérrez, M, Beroíza, T, et al. Ventilatory drive and respiratory muscle function in pregnancy. Am Rev Respir Dis. 1991;144(4):837841. doi:10.1164/ajrccm/144.4.837.Google Scholar
Mushambi, MC, Kinsella, SM, Popat, M, et al. Obstetric Anaesthetists’ Association and Difficult Airway Society guidelines for the management of difficult and failed tracheal intubation in obstetrics. Anaesthesia. 2015;70(11):12861306. doi:10.1111/anae.13260.Google Scholar
Grenville-Mathers, R, Trenchard, HJ. The diaphragm in the puerperium. J Obstet Gynaecol Br Emp. 1953;60(6):825833.Google Scholar
Russell, IF, Chambers, WA. Closing volume in normal pregnancy. Br J Anaesth. 1981;53(10):10431047.Google Scholar
Alaily, AB, Carrol, KB. Pulmonary ventilation in pregnancy. Br J Obstet Gynaecol. 1978;85(7):518524.Google Scholar
Gee, JB, Packer, BS, Millen, JE, Robin, ED. Pulmonary mechanics during pregnancy. J Clin Invest. 1967;46(6):945952. doi:10.1172/JCI105600.Google Scholar
Hignett, R, Fernando, R, McGlennan, A, et al. A randomized crossover study to determine the effect of a 30° head-up versus a supine position on the functional residual capacity of term parturients. Anesth Analg. 2011;113(5):10981102. doi:10.1213/ANE.0b013e31822bf1d2.Google Scholar
Bobrowski, RA. Pulmonary physiology in pregnancy. Clin Obstet Gynecol. 2010;53(2):285300. doi:10.1097/GRF.0b013e3181e04776.Google Scholar
Zwillich, CW, Natalino, MR, Sutton, FD, Weil, JV. Effects of progesterone on chemosensitivity in normal men. J Lab Clin Med. 1978;92(2):262269.Google ScholarPubMed
Jensen, D, Duffin, J, Lam, Y-M, et al. Physiological mechanisms of hyperventilation during human pregnancy. Respir Physiol Neurobiol. 2008;161(1):7686. doi:10.1016/j.resp.2008.01.001.Google Scholar
Abbassi-Ghanavati, M, Greer, L, Cunningham, F. A reference table for clinicians. Obstet Gynecol. 2009;114(6):13261331.Google Scholar
Shankar, KB, Moseley, H, Vemula, V, Ramasamy, M, Kumar, Y. Arterial to end-tidal carbon dioxide tension difference during anaesthesia in early pregnancy. Can J Anaesth. 1989;36(2):124127. doi:10.1007/BF03011432.Google Scholar
Hirabayashi, Y, Shimizu, R, Fukuda, H, Saitoh, K, Igarashi, T. Soft tissue anatomy within the vertebral canal in pregnant women. Br J Anaesth. 1996;77(2):153156.Google Scholar
Ansari, NN, Hasson, S, Naghdi, S, Keyhani, S, Jalaie, S. Low back pain during pregnancy in Iranian women: Prevalence and risk factors. Physiother Theory Pract. 2010;26(1):4048. doi:10.3109/09593980802664968.Google Scholar
Weinreb, JC, Wolbarsht, LB, Cohen, JM, Brown, CE, Maravilla, KR. Prevalence of lumbosacral intervertebral disk abnormalities on MR images in pregnant and asymptomatic nonpregnant women. Radiology. 1989;170(1):125128. doi:10.1148/radiology.170.1.2521192.Google Scholar
Nevo, O, Soustiel, JF, Thaler, I. Maternal cerebral blood flow during normal pregnancy: a cross-sectional study. Am J Obstet Gynecol. 2010;203(5):475.e16. doi:10.1016/j.ajog.2010.05.031.Google Scholar
Johnson, AC, Cipolla, MJ. The cerebral circulation during pregnancy: adapting to preserve normalcy. Physiology. 2015;30(2):139147. doi:10.1152/physiol.00048.2014.Google Scholar
van Veen, TR, Panerai, RB, Haeri, S, Griffioen, AC, Zeeman, GG, Belfort, MA. Cerebral autoregulation in normal pregnancy and preeclampsia. Obstet Gynecol. 2013;122(5):10641069. doi:10.1097/AOG.0b013e3182a93fb5.Google Scholar
Cogan, R, Spinnato, JA. Pain and discomfort thresholds in late pregnancy. Pain. 1986;27(1):6368.Google Scholar
Abboud, TK, Sarkis, F, Hung, TT, et al. Effects of epidural anesthesia during labor on maternal plasma beta-endorphin levels. Anesthesiology. 1983;59(1):15.Google Scholar
Manconi, M, Govoni, V, De Vito, A, et al. Restless legs syndrome and pregnancy. Neurology. 2004;63(6):10651069.Google Scholar
Pien, GW, Schwab, RJ. Sleep disorders during pregnancy. Sleep. 2004;27(7):14051417.Google Scholar
Bernstein, IM, Ziegler, W, Badger, GJ. Plasma volume expansion in early pregnancy. Obstet Gynecol. 2001; 97 (5 Pt 1): 669672.Google Scholar
Lund, CJ, Donovan, JC. Blood volume during pregnancy. Significance of plasma and red cell volumes. Am J Obstet Gynecol. 1967;98(3):394403.Google Scholar
Pritchard, JA. Changes in the blood volume during pregnancy and delivery. Anesthesiology. 1965;26:393399.Google Scholar
Schrier, RW, Fassett, RG. Pathogenesis of sodium and water retention in cardiac failure. Ren Fail. 1998;20(6):773781.Google Scholar
Nadel, AS, Ballermann, BJ, Anderson, S, Brenner, BM. Interrelationships among atrial peptides, renin, and blood volume in pregnant rats. Am J Physiol. 1988; 254 (5 Pt 2): R793800.Google Scholar
Peck, TM, Arias, F. Hematology changes associated with pregnancy. Clin Obstet Gynecol. 1979;22(4):785798.Google Scholar
Whittaker, PG, Macphail, S, Lind, T. Serial hematologic changes and pregnancy outcome. Obstet Gynecol. 1996;88(1):3339. doi:10.1016/0029–7844(96)00095–6.Google Scholar
Centers for Disease Control (CDC). CDC criteria for anemia in children and childbearing-aged women. MMWR Morb Mortal Wkly Rep. 1989;38(22):400404.Google Scholar
Earl, R, Woteki, C. Iron deficiency anemia: recommended guidelines for the prevention, detection, and management among U.S. children and women of childbearing age. In: Institute of Medicine (US) Committee on the Prevention, Detection, and Management of Iron Deficiency Anemia Among U.S. Children and Women of Childbearing Age. Washington, D.C.: National Academies Press; 1993. doi:10.17226/2251.Google Scholar
Kuvin, SF, Brecher, G. Differential neutrophil counts in pregnancy. N Engl J Med. 1962;266(17):877878. doi:10.1056/NEJM196204262661708.Google Scholar
Molberg, P, Johnson, C, Brown, TS. Leukocytosis in labor: what are its implications? Fam Pract Res J. 1994;14(3):229236.Google Scholar
Acker, DB, Johnson, MP, Sachs, BP, Friedman, EA. The leukocyte count in labor. Am J Obstet Gynecol. 1985;153(7):737739.Google Scholar
Camann, W. Obstetric neuraxial anesthesia contraindicated? Really? Time to rethink old dogma. Anesth Analg. 2015;121(4):846848. doi:10.1213/ANE.0000000000000925.Google Scholar
Khan, KS, Wojdyla, D, Say, L, Gulmezoglu, AM, Van Look, PF. WHO analysis of causes of maternal death: a systematic review. Lancet. 2006;367(9516):10661074. doi:10.1016/S0140–6736(06)68397–9.Google Scholar
Say, L, Chou, D, Gemmill, A, et al. Global causes of maternal death: a WHO systematic analysis. Lancet Glob Heal. 2014;2(6):e323e333. doi:10.1016/S2214–109X(14)70227-X.Google Scholar
D’Alton, ME, Friedman, AM, Smiley, RM, et al. National Partnership for Maternal Safety: Consensus Bundle on Venous Thromboembolism. J Midwifery Womens Health. 2016;61(5):649657. doi:10.1111/jmwh.12544.Google Scholar
Palmerola, K, D’Alton, M, Brock, C, Friedman, A. A comparison of recommendations for pharmacologic thromboembolism prophylaxis after caesarean delivery from three major guidelines. BJOG. 2016;123(13):21572162. doi:10.1111/1471–0528.13706.Google Scholar
D’Alton, ME, Friedman, AM, Smiley, RM, et al. National Partnership for Maternal Safety Consensus Bundle on Venous Thromboembolism. Obstet Gynecol. 2016;128(4):688698. doi:10.1097/AOG.0000000000001579.Google Scholar
Shakur, H, Roberts, I, Fawole, B, et al. Effect of early tranexamic acid administration on mortality, hysterectomy, and other morbidities in women with post-partum haemorrhage (WOMAN): an international, randomised, double-blind, placebo-controlled trial. Lancet. 2017;389(10084):21052116. doi:10.1016/S0140–6736(17)30638–4.Google Scholar
Van Thiel, DH, Gavaler, JS, Stremple, J. Lower esophageal sphincter pressure in women using sequential oral contraceptives. Gastroenterology. 1976;71(0016–5085;2):232234.Google Scholar
Richter, JE. Review article: The management of heartburn in pregnancy. Aliment Pharmacol Ther. 2005;22(9):749757. doi:10.1111/j.1365–2036.2005.02654.x.Google Scholar
Wong, CA, McCarthy, RJ, Fitzgerald, PC, Raikoff, K, Avram, MJ. Gastric emptying of water in obese pregnant women at term. Anesth Analg. 2007;105(3):751755. doi:10.1213/01.ane.0000278136.98611.d6.Google Scholar
Chiloiro, M, Darconza, G, Piccioli, E, De Carne, M, Clemente, C, Riezzo, G. Gastric emptying and orocecal transit time in pregnancy. J Gastroenterol. 2001;36(8):538543. doi:10.1007/s005350170056.Google Scholar
Derbyshire, EJ, Davies, J, Detmar, P. Changes in bowel function: Pregnancy and the puerperium. Dig Dis Sci. 2007;52(2):324328. doi:10.1007/s10620–006–9538-x.Google Scholar
Gill, SK, Maltepe, C, Koren, G. The effect of heartburn and acid reflux on the severity of nausea and vomiting of pregnancy. Can J Gastroenterol. 2009;23(4):270272.Google Scholar
Costantine, MM. Physiologic and pharmacokinetic changes in pregnancy. Front Pharmacol. 2014;5:65. doi:10.3389/fphar.2014.00065.Google Scholar
Mendez-Sanchez, N, Chavez-Tapia, NC, Uribe, M. Pregnancy and gallbladder disease. Ann Hepatol. 2006;5(3):227230. doi:457963 [pii].Google Scholar
Davison, JM, Dunlop, W. Renal hemodynamics and tubular function in normal human pregnancy. Kidney Int. 1980;18:152161.CrossRefGoogle ScholarPubMed
Mattison, DR. Clinical Pharmacology During Pregnancy. Elsevier; 2013. doi:10.1016/C2010–0-67194-X.Google Scholar
Rasmussen, PE, Nielsen, FR. Hydronephrosis during pregnancy: a literature survey. Eur J Obstet Gynecol Reprod Biol. 1988;27(3):249259. doi:10.1016/0028–2243(88)90130-X.Google Scholar
Delzell, JE, Lefevre, ML. Urinary tract infections during pregnancy. Am Fam Physician. 2000;61(3):713720.Google Scholar
Dichtel, LE, Alexander, EK. Preventing and treating maternal hypothyroidism during pregnancy. Curr Opin Endocrinol Diabetes Obes. 2011;18(6):389394. doi:10.1097/MED.0b013e32834cd3d7.Google Scholar
Blatt, AJ, Nakamoto, JM, Kaufman, HW. National status of testing for hypothyroidism during pregnancy and postpartum. J Clin Endocrinol Metab. 2012;97(3):777784. doi:10.1210/jc.2011–2038.Google Scholar
Harada, A, Hershman, JM, Reed, AW, et al. Comparison of thyroid stimulators and thyroid hormone concentrations in the sera of pregnant women. J Clin Endocrinol Metab. 1979;48(5):793797. doi:10.1210/jcem-48–5-793.Google Scholar
Fisher, PM, Sutherland, HW, Bewsher, PD. The insulin response to glucose infusion in gestational diabetes. Diabetologia. 1980;19(1):1014.CrossRefGoogle ScholarPubMed
Kristiansson, P, Nilsson-Wikmar, L, Von Schoultz, B, Svardsudd, K, Wramsby, H. Back pain in in-vitro fertilized and spontaneous pregnancies. Hum Reprod. 1998;13(11):32333238.Google Scholar
Berg, G, Hammar, M, Möller-Nielsen, J, Lindén, U, Thorblad, J. Low back pain during pregnancy. Obstet Gynecol. 1988;71(1):7175. doi:10.1097/01.AOG.0000129403.54061.0e.Google Scholar
Loughnan, BA, Carli, F, Romney, M, Doré, CJ, Gordon, H. Epidural analgesia and backache: A randomized controlled comparison with intramuscular meperidine for analgesia during labour. Br J Anaesth. 2002;89(3):466472. doi:10.1093/bja/aef215.Google Scholar
Russell, R, Dundas, R, Reynolds, F. Long term backache after childbirth: prospective search for causative factors. BMJ 1996;312(7043):13841388. doi:10.1136/bmj.312.7043.1384a10.1136/bmj.312.7043.1384.Google Scholar
Breen, TW, Ransil, BJ, Groves, PA, Oriol, NE. Factors associated with back pain after childbirth. Anesthesiology. 1994;81(1):2934. doi:10.1097/00000542–199407000–00006.Google Scholar
Howell, CJ, Kidd, C, Roberts, W, et al. A randomised controlled trial of epidural compared with non-epidural analgesia in labour. Br J Obstet Gynaecol. 2001;108(1):2733. doi:10.1016/S0306–5456(00)00012–7.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×