Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-s2hrs Total loading time: 0 Render date: 2024-11-09T20:15:10.246Z Has data issue: false hasContentIssue false

7 - Unreplicated designs

Published online by Cambridge University Press:  13 November 2009

C. Patrick Doncaster
Affiliation:
University of Southampton
Andrew J. H. Davey
Affiliation:
UK Water Research Centre (WRc)
Get access

Summary

Every model in Chapters 2 and 3 has one or more equivalents without full replication. For model 2.1 it is 1.1, for 2.2 it is 2.1, for 3.1 it is 4.1 or 6.1, for 3.2 it is 4.2 or 6.2, for 3.3 it is 5.6 or 6.3, and for 3.4 it is 3.1. Here we give two further versions of factorial models 3.1 and 3.2 without full replication. The lack of replicated sampling units means that at least one of the factors must be random, as demonstrated by model 7.1(i) below in comparison to (ii) and (iii). Factorial designs that lack full replication must further assume that there are no significant higher-order interactions between factors, which cannot be tested by the model since there is no measure of the residual error among replicate observations (subjects). This is problematic because lower-order effects can only be interpreted fully with respect to their higher-order interactions (chapter 3). Falsely assuming an absence of higher-order interactions will cause tests of lower-order effects to overestimate the Type I error (rejection of a true null hypothesis) and to underestimate the Type II error (acceptance of a false null hypothesis). Without testing for interactions, causality cannot be attributed to significant main effects, and no conclusion can be drawn about non-significant main effects. For some analyses, the existence of a significant main effect when levels of an orthogonal random block are pooled together may hold interest regardless of whether or not the effect also varies with block; the main effect indicates an overall trend averaged across levels of the random factor.

Type
Chapter
Information
Analysis of Variance and Covariance
How to Choose and Construct Models for the Life Sciences
, pp. 229 - 236
Publisher: Cambridge University Press
Print publication year: 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×