Skip to main content Accessibility help
×
Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-29T08:15:27.889Z Has data issue: false hasContentIssue false

X - Brownian Motion and the Wiener Process

Published online by Cambridge University Press:  13 August 2009

Ron Blei
Affiliation:
University of Connecticut
Get access

Summary

Mise en Scène: A Historical Backdrop and Heuristics

The Wiener process – a stochastic process with independent Gaussian increments – was originally conceived as a probabilistic model for Brownian movement, and has been, ever since, among the most influential mathematical constructs in the twentieth century. For our purposes, we used it in Chapter VI §2 to produce a canonical example of an F2-measure that cannot be extended to an F1-measure. In this chapter and the next, we examine and develop ideas underlying this example.

We begin here with some of the history and heuristics behind Brownian motion and the Wiener process. (In this book, ‘Brownian motion’ or ‘Brownian movement’ will refer always to a physical phenomenon, and the ‘Wiener process’ to Norbert Wiener's mathematical model of it.)

From Brown to Wiener

In the sciences at large, Brownian movement generically refers to haphazard, erratic, difficult-to-predict trajectories of particles. Such movements exhibited by tiny particles suspended in liquid first became known to naturalists in the seventeenth century, soon after the invention of the microscope, and for a long time were thought to be vital – always manifesting life. Refuting that ‘vitality’ was the cause, the botanist Robert Brown recorded in 1827 that erratic movements, such as those observed by his colleagues and predecessors, were in fact performed by inorganic as well as organic particles. He guessed these particles to be nature's most basic constituents, and referred to them as ‘active molecules’ [Br]. Brown almost got it right.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×