Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-fbnjt Total loading time: 0 Render date: 2024-11-07T20:04:42.602Z Has data issue: false hasContentIssue false

References

Published online by Cambridge University Press:  08 June 2019

Theo Gerkema
Affiliation:
Royal Netherlands Institute for Sea Research
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2019

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Agnew, D. C. 2007. Earth tides. Pages 163–195 of: Herring, T. A. (ed), Treatise on Geophysics, Vol. 3: Geodesy. New York: Elsevier.Google Scholar
Arbic, B. K. 2005. Atmospheric forcing of the oceanic semidiurnal tide. Geophys. Res. Lett., 32(L02610).Google Scholar
Arbic, B. K., Mitrovica, J. X., MacAyeal, D. R., and Milne, G. A. 2008. On the factors behind large Labrador Sea tides during the last glacial cycle and the potential implications for Heinrich events. Paleoceanogr., 23(PA3211).CrossRefGoogle Scholar
Baker, T. F. 1984. Tidal deformations of the Earth. Sci. Prog. Oxf., 69, 197233.Google Scholar
Bartels, J. 1957. Gezeitenkräfte. Pages 734–774 of: Flügge, S., and Bartels, J. (eds), Encyclopedia of Physics, Vol. XLVII: Geophysics II. Berlin: Springer.Google Scholar
Beerens, S. P., Ridderinkhof, H., and Zimmerman, J. T. F. 1994. An analytical study of chaotic stirring in tidal areas. Chaos, Solitons & Fractals, 4(6), 10111029.Google Scholar
Bills, B. G., and Ray, R. D. 1999. Lunar orbital evolution: A synthesis of recent results. Geophys. Res. Lett., 26(19), 30453048.Google Scholar
Blanco, V. M., and McCuskey, S. W. 1961. Basic Physics of the Solar System. Reading: Addison-Wesley.Google Scholar
Burchard, H., and Baumert, H. 1998. The formation of estuarine turbidity maxima due to density effects in the salt wedge: A hydrodynamic process study. J. Phys. Oceanogr., 28, 309321.Google Scholar
Burchard, H., and Hetland, R. D. 2010. Quantifying the contributions of tidal straining and gravitational circulation to residual circulation in periodically stratified tidal estuaries. J. Phys. Oceanogr., 40, 12431262.Google Scholar
Carter, G. S., Fringer, O. B., and Zaron, E. D. 2012. Regional models of internal tides. Oceanography, 25(2), 5665.CrossRefGoogle Scholar
###########Google Scholar
Cartwright, D. E. 1978. Oceanic tides. Int. Hydrogr. Rev., LV(2), 3584.Google Scholar
Cartwright, D. E. 1999. Tides: A Scientific History. Cambridge: Cambridge University Press.Google Scholar
Cartwright, D. E., and Edden, A. C. 1973. Corrected tables of tidal harmonics. Geophys. J. R. Astr. Soc., 33, 253264.Google Scholar
Cartwright, D. E., and Taylor, R. J. 1971. New computations of the tide-generating potential. Geophys. J. R. Astr. Soc., 23, 4574.Google Scholar
Chapman, S., and Lindzen, R. S. 1970. Atmospheric Tides: Thermal and Gravitational. Dordrecht: Reidel.Google Scholar
Darwin, G. H. 1911. The Tides and Kindred Phenomena in the Solar System. 3rd edn. London: John Murray.Google Scholar
De Swart, H. E., and Zimmerman, J. T. F. 2009. Morphodynamics of tidal inlet systems. Annu. Rev. Fluid Mech., 41, 203229.Google Scholar
Desai, S. D. 2002. Observing the pole tide with satellite altimetry. J. Geophys. Res., 107(C11), 3186.Google Scholar
Dijkstra, Y. M., Schuttelaars, H. M., and Burchard, H. 2017. Generation of exchange flows in estuaries by tidal and gravitational eddy viscosity-shear covariance (ESCO). J. Geophys. Res., 122, 42174237.Google Scholar
Doodson, A. T. 1921. The harmonic development of the tide-generating potential. Proc. R. Soc. London, A, 100, 305329.Google Scholar
Doodson, A. T. 1958. Oceanic tides. Adv. Geophys., 5, 117152.Google Scholar
Doodson, A. T., and Warburg, H. D. 1941. Admiralty Manual of Tides. London: His Majesty’s Stationary Office.Google Scholar
Duran-Matute, M., and Gerkema, T. 2015. Calculating residual flows through a multiple-inlet system: The conundrum of the tidal period. Oc. Dyn., 65, 14611475.Google Scholar
Duran-Matute, M., Gerkema, T., and Sassi, M. G. 2016. Quantifying the residual volume transport through a multiple inlet system in response to wind forcing: The case of the western Dutch Wadden Sea. J. Geophys. Res., 121, 88888903.Google Scholar
Egbert, G. D., and Ray, R. D. 2001. Estimates of M2 tidal energy dissipation from TOPEX/Poseidon altimeter data. J. Geophys. Res., 106(C10), 2247522502.Google Scholar
Egbert, G. D., and Ray, R. D. 2003a. Deviation of long-period tides from equilibrium: kinematics and geostrophy. J. Phys. Oceanogr., 33, 822839.Google Scholar
Egbert, G. D., and Ray, R. D. 2003b. Semi-diurnal and diurnal tidal dissipation from TOPEX/Poseidon altimetry. Geophys. Res. Lett., 30(17), 1907.CrossRefGoogle Scholar
Egbert, G. D., and Ray, R. D. 2017. Tidal prediction. J. Mar. Res., 75, 189237.Google Scholar
Egbert, G. D., Ray, R. D., and Bills, B. G. 2004. Numerical modeling of the global semidiurnal tide in the present day and in the last glacial maximum. J. Geophys. Res., 109(C03003).Google Scholar
Ekman, M. 1993. A concise history of the theories of tides, precession-nutation and polar motion (from antiquity to 1950). Surv. Geophys., 14, 585617.Google Scholar
Feistel, R., and Hagen, E. 1995. On the GIBBS thermodynamic potential of seawater. Prog. Oceanogr., 36, 249327.Google Scholar
Fitzpatrick, R. 2012. An Introduction to Celestial Mechanics. Cambridge: Cambridge University Press.Google Scholar
Garrett, C. 1972. Tidal resonance in the Bay of Fundy and Gulf of Maine. Nature, 238, 441443.Google Scholar
Garrett, C., and Gerkema, T. 2007. On the body-force term in internal-tide generation. J. Phys. Oceanogr., 37, 21722175.Google Scholar
Garrett, C., and Greenberg, D. 1977. Predicting changes in tidal regime: The open boundary problem. J. Phys. Oceanogr., 7, 171181.Google Scholar
Garrett, C., and Kunze, E. 2007. Internal tide generation in the deep ocean. Annu. Rev. Fluid Mech., 39, 5787.Google Scholar
Garrett, C., and St. Laurent, L. 2002. Aspects of deep ocean mixing. J. Oceanogr., 58, 1124.Google Scholar
Gerkema, T., and Gostiaux, L. 2012. A brief history of the Coriolis force. Europhysics News, 43(2), 1417.Google Scholar
Gerkema, T., and Shrira, V. I. 2005. Near-inertial waves in the ocean: Beyond the “traditional approximation.J. Fluid Mech., 529, 195219.Google Scholar
Gerkema, T., and Van Haren, H. 2007. Internal tides and energy fluxes over Great Meteor Seamount. Ocean Sci., 3, 441449.Google Scholar
Gerkema, T., Nauw, J. J., and Van der Hout, C. M. 2014. Measurements on the transport of suspended particulate matter in the Vlie Inlet. Neth. J. Geosci., 93(3), 95105.Google Scholar
Geyer, W. R., and MacCready, P. 2014. The estuarine circulation. Annu. Rev. Fluid Mech., 46, 175197.Google Scholar
Godin, G. 1972. The Analysis of Tides. Toronto: University of Toronto Press.Google Scholar
Goldstein, H. 1980. Classical Mechanics. 2nd edn. Reading: Addison-Wesley.Google Scholar
Gräwe, U., Flöser, G., Gerkema, T., Duran-Matute, M., Badewien, T. H., Schulz, E., and Burchard, H. 2016. A numerical model for the entire Wadden Sea: Skill assessment and analysis of hydrodynamics. J. Geophys. Res., 121, 52315251.CrossRefGoogle Scholar
Green, J. A. M., and Nycander, J. 2013. A comparison of tidal conversion parameterizations for tidal models. J. Phys. Oceanogr., 43, 104119.Google Scholar
Green, J. A. M., Huber, M., Waltham, D., Buzan, J., and Wells, M. 2017. Explicitly modelled deep-time tidal dissipation and its implication for Lunar history. Earth Plan. Sci. Lett., 461, 4653.Google Scholar
Green, J. A. M., Molloy, J. L., Davies, H. S., and Duarte, J. C. 2018. Is there a tectonically driven supertidal cycle? Geophys. Res. Lett., 45, 35683576.Google Scholar
Guérin, O. 2004. Tout Savoir sur les Marées. Rennes: Editions Ouest-France.Google Scholar
Hansen, K. S. 1982. Secular effects of oceanic tidal dissipation on the moon’s orbit and the earth’s rotation. Rev. Geophys. Space Phys., 20(3), 457480.Google Scholar
Harris, D. L. 1991. Reproducibility of the harmonic constants. Pages 753–770 of: Parker, B. B. (ed), Tidal Hydrodynamics. New York: Wiley.Google Scholar
Hendershott, M. C. 1981. Long waves and ocean tides. Pages 292–341 of: Warren, B. A., and Wunsch, C. (eds), Evolution of Physical Oceanography. Cambridge, Mass.: MIT Press.Google Scholar
Hibbert, A., Royston, S. J., Horsburgh, K. J., Leach, H., and Hisscott, A. 2015. An empirical approach to improving tidal predictions using recent real-time tide gauge data. J. Oper. Oceanogr., 8(1), 4051.Google Scholar
Huthnance, J. M. 1973. Tidal current asymmetries over the Norfolk sandbanks. Est. Coast. Mar. Sci., 1, 8999.Google Scholar
Jackson, C. R., Da Silva, J. C. B., and Jeans, G. 2012. The generation of nonlinear internal waves. Oceanography, 25(2), 108123.Google Scholar
Jackson, C. R., Da Silva, J. C. B., Jeans, G., Alpers, W., and Caruso, M. J. 2013. Nonlinear internal waves in synthetic aperture radar imagery. Oceanography, 26(2), 6879.Google Scholar
Jay, D. A., and Musiak, J. D. 1994. Particle trapping in estuarine tidal flows. J. Geophys. Res., 99(C10), 2044520461.CrossRefGoogle Scholar
Kantha, L. H., Stewart, J. S., and Desai, S. D. 1998. Long-period lunar fortnightly and monthly ocean tides. J. Geophys. Res., 103(C6), 1263912647.Google Scholar
Krauss, W. 1966. Interne Wellen. Berlin: Gebrüder Borntraeger.Google Scholar
Lam, F. P. A. 1999. Shelf waves with diurnal tidal frequency at the Greenland shelf edge. Deep-Sea Res. I, 46, 895923.Google Scholar
Le Provost, C. 1991. Generation of overtides and compound tides (review). Pages 269–295 of: Parker, B. B. (ed), Tidal Hydrodynamics. New York: Wiley.Google Scholar
LeBlond, P. H., and Mysak, L. A. 1978. Waves in the Ocean. Amsterdam: Elsevier.Google Scholar
Lin, C. C., and Segel, L. A. 1974. Mathematics Applied to Deterministic Problems in the Natural Sciences. New York: Macmillan.Google Scholar
Longuet-Higgins, M. S. 1968a. The eigenfunctions of Laplace’s Tidal Equations over a sphere. Phil. Trans. R. Soc. London, A, 262(1132), 511607.Google Scholar
Longuet-Higgins, M. S. 1968b. On the trapping of waves along a discontinuity of depth in a rotating ocean. J. Fluid Mech., 31(3), 417434.Google Scholar
Lyard, F. H., and Le Provost, C. 1997. Energy budget of the tidal hydrodynamic model FES94.1. Geophys. Res. Lett., 24(6), 687690.Google Scholar
Maas, L. R. M., and Van Haren, J. J. M. 1987. Observations on the vertical structure of tidal and inertial currents in the central North Sea. J. Mar. Res., 45, 293318.Google Scholar
MacCready, P., and Geyer, W. R. 2010. Advances in estuarine physics. Annu. Rev. Mar. Sci., 2, 3558.Google Scholar
Morozov, E. G. 2018. Oceanic Internal Tides: Observations, Analysis and Modeling: A Global View. Berlin: Springer.Google Scholar
Munk, W., and Bills, B. 2007. Tides and the climate: Some speculations. J. Phys. Oceanogr., 37, 135147.Google Scholar
Munk, W., and Wunsch, C. 1997. The Moon, of course. Oceanography, 10(3), 132134.Google Scholar
Munk, W., and Wunsch, C. 1998. Abyssal recipes II: Energetics of tidal and wind mixing. Deep-Sea Res. I, 45(3), 19772010.Google Scholar
Nicolas, G. 1995. Introduction to Nonlinear Science. Cambridge: Cambridge University Press.Google Scholar
Officer, C. B. 1976. Physical Oceanography of Estuaries (And Associated Coastal Waters). New York: Wiley.Google Scholar
Oonishi, Y., and Kunishi, H. 1979. Water exchange between adjacent vortices under an additional oscillatory flow. J. Oceanogr. Soc. Japan, 35, 136140.CrossRefGoogle Scholar
University, Open. 1989. Waves, Tides and Shallow-Water Processes. Oxford: Pergamon.Google Scholar
Palmer, J. D. 1996. Time, tide and the living clocks of marine organisms. Am. Sci., 84, 570578.Google Scholar
Parker, B. B. 1991. The relative importance of the various nonlinear mechanisms in a wide range of tidal interactions (review). Pages 237–268 of: Parker, B. B. (ed), Tidal Hydrodynamics. New York: Wiley.Google Scholar
Parker, B. B. 2011. The tide predictions for D-Day. Phys. Today, 64(9), 3540.Google Scholar
Pawlowicz, R., Beardsley, B., and Lentz, S. 2002. Classical tidal harmonic analysis including error estimates in MATLAB using T TIDE. Computers & Geosci., 28, 929937.Google Scholar
Platzman, G. W. 1984. Normal modes in the world ocean. Part IV: Synthesis of diurnal and semidiurnal tides. J. Phys. Oceanogr., 14, 15321550.Google Scholar
Prandle, D. 1982. The vertical structure of tidal currents and other oscillatory flows. Cont. Shelf Res., 1(2), 191207.Google Scholar
Proudman, J. 1953. Dynamical Oceanography. London: Methuen.Google Scholar
Pugh, D., and Woodworth, P. 2014. Sea-Level Science: Understanding Tides, Surges, Tsunamis and Mean Sea-Level Changes. Cambridge: Cambridge University Press.Google Scholar
Ray, R. D. 1998. Ocean self-attraction and loading in numerical tidal models. Mar. Geod., 21(3), 181192.Google Scholar
Ray, R. D. 2007. Propagation of the overtide M4 through the deep Atlantic Ocean. Geophys. Res. Lett., 34(L21602).Google Scholar
Ray, R. D., and Cartwright, D. E. 2007. Times of peak astronomical tides. Geophys. J. Int., 168, 9991004.Google Scholar
Ray, R. D., and Egbert, G. D. 2004. The global S1 tide. J. Phys. Oceanogr., 34, 19221935.Google Scholar
Ray, R. D., Eanes, R. J., and Lemoine, F. G. 2001. Constraints on energy dissipation in the Earth’s body tide from satellite tracking and altimetry. Geophys. J. Int., 144, 471480.Google Scholar
Richards, E. G. 1998. Mapping Time: The Calendar and Its History. Oxford: Oxford University Press.Google Scholar
Ridderinkhof, H., and Zimmerman, J. T. F. 1992. Chaotic stirring in a tidal system. Science, 258, 11071111.Google Scholar
Roberts, J. 1975. Internal Gravity Waves in the Ocean. New York: Marcel Dekker.Google Scholar
Robinson, I. S. 1983. Tidally induced residual flows. Pages 321–356 of: Johns, B. (ed), Physical Oceanography of Coastal and Shelf Seas. New York: Elsevier.Google Scholar
Roos, P. C., and Schuttelaars, H. M. 2011. Influence of topography on tide propagation and amplification in semi-enclosed basins. Oc. Dyn., 61, 2138.Google Scholar
Russell, H. N., Dugan, R. S., and Stuart, J. Q. 1926. Astronomy: A Revision of Young’s Manual of Astronomy. Volume I: The Solar System. Boston: Ginn and Company.Google Scholar
Sanchez, B. V. 2008. Normal Modes of the Global Oceans: A Review. Mar. Geod., 31(3), 181212.Google Scholar
Schureman, P. 1940. Manual of Harmonic Analysis and Prediction of Tides. Washington: U. S. Coast and Geodetic Survey, Spec. Publ. No. 98.Google Scholar
Serrin, J. 1959. Mathematical principles of classical fluid mechanics. Pages 125–263 of: Flügge, S., and Truesdell, C. (eds), Encyclopedia of Physics, Vol. VIII: Fluid Dynamics I. Berlin: Springer.Google Scholar
Shapiro, G. I. 2011. Effect of tidal stream power generation on the region-wide circulation in a shallow sea. Ocean Sci., 7, 165174.Google Scholar
Simmons, H. L., Jayne, S. R., St. Laurent, L. C., and Weaver, A. J. 2004. Tidally driven mixing in a numerical model of the ocean general circulation. Ocean Model., 6, 245263.Google Scholar
Simpson, J. H., Brown, J., Matthews, J., and Allen, G. 1990. Tidal straining, density currents, and stirring in the control of estuarine stratification. Estuaries and Coasts, 13(2), 125132.Google Scholar
Smith, W. H. F., and Sandwell, D. T. 1997. Global sea floor topography from satellite altimetry and ship depth soundings. Science, 277, 19561962.Google Scholar
Spencer, J. 2011. Watery Enceladus. Phys. Today, 64(11), 3844.Google Scholar
Stammer, D., et al. 2014. Accuracy assessment of global barotropic ocean tide models. Rev. Geophys., 52, 243282.Google Scholar
Stephenson, F. R. 2003. Historical eclipses and Earth’s rotation. Astronomy & Geophysics, 44, 2.22–2.27.Google Scholar
Sutherland, G., Garrett, C., and Foreman, M. 2005. Tidal resonance in Juan de Fuca Strait and the Strait of Georgia. J. Phys. Oceanogr., 35, 12791286.Google Scholar
Tamisiea, M. E., and Mitrovica, J. X. 2011. The moving boundaries of sea level change: Understanding the origins of geographic variability. Oceanography, 24(2), 2439.Google Scholar
Taylor, G. I. 1922. Tidal oscillations in gulfs and rectangular basins. Proc. London Math. Soc., 20, 148181.Google Scholar
Tessmar-Raible, K., Raible, F., and Arboleda, E. 2011. Another place, another timer: Marine species and the rhythms of life. Bioessays, 33, 165172.Google Scholar
Toksöz, M. N., Goins, N. R., and Cheng, C. H. 1977. Moonquakes: Mechanisms and relation to tidal stresses. Nature, 196(4293), 979981.Google Scholar
Uncles, R. J. 2002. Estuarine physical processes research: Some recent studies and progress. Estuarine Coast. Shelf Sci., 55, 829856.Google Scholar
Vallis, G. K. 2006. Atmospheric and Oceanic Fluid Dynamics: Fundamentals and Large-Scale Circulation. Cambridge: Cambridge University Press.Google Scholar
Van de Kreeke, J., and Brouwer, R. L. 2017. Tidal Inlets: Hydrodynamics and Morphodynamics. Cambridge: Cambridge University Press.Google Scholar
Van der Hout, C. M., Witbaard, R., Bergman, M. J. N., Duineveld, G. C. A., Rozemeijer, M. J. C., and Gerkema, T. 2017. The dynamics of suspended particulate matter (SPM) and chlorophyll-a from intratidal to annual time scales in a coastal turbidity maximum. J. Sea Res., 127, 105118.Google Scholar
Van Haren, H., and Gostiaux, L. 2009. High-resolution open-ocean temperature spectra. J. Geophys. Res., 114(C05005), 114.Google Scholar
Van Haren, H., and Gostiaux, L. 2012. Energy release through internal wave breaking. Oceanography, 25(2), 124131.Google Scholar
Van Veen, J. 1937. Velocities in a Vertical Line of a Stream. Rapporten en mededeelingen van den Rijkswaterstaat, No. 29. ‘s-Gravenhage: Alg. Landsdrukkerij.Google Scholar
Visser, A. W., Souza, A. J., Hessner, K., and Simpson, J. H. 1994. The effect of stratification on tidal current profiles in a region of freshwater influence. Oceanologica Acta, 17(4), 369381.Google Scholar
Vlasenko, V., Stashchuk, N., and Hutter, K. 2005. Baroclinic Tides: Theoretical Modeling and Observational Evidence. Cambridge: Cambridge University Press.Google Scholar
Wells, M. R., Allison, P. A., Piggott, M. D., Pain, C. C., Hampson, G. J., and de Oliveira, C. R. E. 2005. Large sea, small tides: the Late Carboniferous seaway of NW Europe. J. Geol. Soc. London, 162, 417420.Google Scholar
Williams, G. E. 2000. Geological constraints on the Precambrian history of Earth’s rotation and the Moon’s orbit. Rev. Geophys., 38(1), 3759.Google Scholar
Woodworth, P. L. 2012. A note on the nodal tide in sea level records. J. Coastal Res., 28(2), 316323.Google Scholar
Zimmerman, J. T. F. 1981. Dynamics, diffusion and geomorphological significance of tidal residual eddies. Nature, 290(5807), 549555.Google Scholar
Zimmerman, J. T. F. 1982. On the Lorentz linearization of a quadratically damped forced oscillator. Phys. Lett., 89A(3), 123124.Google Scholar
Zimmerman, J. T. F. 1986. The tidal whirlpool: a review of horizontal dispersion by tidal and residual currents. Neth. J. Sea Res., 20(2/3), 133154.Google Scholar
Zimmerman, J. T. F. 1993. Cooscillation. Lecture notes R93–8, IMAU, Utrecht University.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • References
  • Theo Gerkema, Royal Netherlands Institute for Sea Research
  • Book: An Introduction to Tides
  • Online publication: 08 June 2019
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • References
  • Theo Gerkema, Royal Netherlands Institute for Sea Research
  • Book: An Introduction to Tides
  • Online publication: 08 June 2019
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • References
  • Theo Gerkema, Royal Netherlands Institute for Sea Research
  • Book: An Introduction to Tides
  • Online publication: 08 June 2019
Available formats
×