Skip to main content Accessibility help
×
Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-18T13:53:28.729Z Has data issue: false hasContentIssue false

Chapter 6 - Plastic deformation

Published online by Cambridge University Press:  02 February 2010

David J. Green
Affiliation:
Pennsylvania State University
Get access

Summary

Inelastic deformation can occur in crystalline materials by plastic ‘flow’. This behavior can lead to large permanent strains, in some cases, at rapid strain rates. In spite of the large strains, the materials retain crystallinity during the deformation process. Surface observations on single crystals often show the presence of lines and steps, such that it appears one portion of the crystal has slipped over another, as shown schematically in Fig. 6.1 (a). The slip occurs on specific crystallographic planes in well-defined directions. Clearly, it is important to understand the mechanisms involved in such deformations and identify structural means to control this process. Permanent deformation can also be accomplished by twinning (Fig. 6.1(b)) but the emphasis in this book will be on plastic deformation by glide (slip).

Theoretical shear strength

Figure 6.2 shows one possible way in which crystal glide could occur, with one plane of atoms being sheared past an adjacent plane. In the perfect crystal, the atoms are assumed to lie directly above each other with a planar spacing d. Clearly, as the atoms are displaced, the stress will rise and pass through a maximum. Once the displacement u reaches a value of b/2, i.e., at the mid-shear position, the atoms would be equally as likely to complete the displacement (u=b) as to return to their original positions.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Plastic deformation
  • David J. Green, Pennsylvania State University
  • Book: An Introduction to the Mechanical Properties of Ceramics
  • Online publication: 02 February 2010
  • Chapter DOI: https://doi.org/10.1017/CBO9780511623103.007
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Plastic deformation
  • David J. Green, Pennsylvania State University
  • Book: An Introduction to the Mechanical Properties of Ceramics
  • Online publication: 02 February 2010
  • Chapter DOI: https://doi.org/10.1017/CBO9780511623103.007
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Plastic deformation
  • David J. Green, Pennsylvania State University
  • Book: An Introduction to the Mechanical Properties of Ceramics
  • Online publication: 02 February 2010
  • Chapter DOI: https://doi.org/10.1017/CBO9780511623103.007
Available formats
×