Skip to main content Accessibility help
×
Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-25T06:26:28.799Z Has data issue: false hasContentIssue false

Bibliography

Published online by Cambridge University Press:  19 December 2020

Douglas Lind
Affiliation:
University of Washington
Brian Marcus
Affiliation:
University of British Columbia, Vancouver
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2021

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[Adl1] Adler, R., The torus and the disk, IBM J. of Research and Development 31 (1987), 224234.Google Scholar
[Adl2] Adler, R., Symbolic dynamics and Markov partitions, Bull AMS 35 (1998), 156.Google Scholar
[AdlCH] Adler, R. L., Coppersmith, D., and Hassner, M., Algorithms for sliding block codes – an application of symbolic dynamics to information theory, IEEE Trans. Inform. Theory 29 (1983), 522.CrossRefGoogle Scholar
[AdlF] Adler, R. and Flatto, L., Geodesic flows, interval maps, and symbolic dynamics, Bull. Amer. Math. Soc. 25 (1991), 229334.Google Scholar
[AdlFKM] Adler, R. L., Friedman, J., Kitchens, B., and Marcus, B. H., State splitting for variable-length graphs, IEEE Trans. Inform. Theory 32 (1986), 108113.Google Scholar
[AdlGW] Adler, R. L., Goodwyn, L. W., and Weiss, B., Equivalence of topological Markov shifts, Israel J. Math. 27 (1977), 4863.Google Scholar
[AdlHM] Adler, R. L., Hassner, M., and Moussouris, J., Method and apparatus for generating a noiseless sliding block code for a (1, 7) channel with rate 2/3, US Patent 4,413,251 (1982).Google Scholar
[AdlKM] Adler, R., Kitchens, B., and Marcus, B., Finite group actions on subshifts of finite type, Ergod. Th. & Dynam. Sys. 5 (1985), 125.Google Scholar
[AdlKoM] Adler, R., Konheim, A., and McAndrew, M., Topological entropy, Trans. Amer. Math. Soc. 114 (1965), 309319.Google Scholar
[AdlM] Adler, R. and Marcus, B., Topological Entropy and Equivalence of Dynamical Systems, Mem. Amer. Math. Soc. 219, 1979.Google Scholar
[AdlW] Adler, R. and Weiss, B., Similarity of Automorphisms of the Torus, Mem. Amer. Math. Soc. 98, 1970.Google Scholar
[AhoHU] Aho, A. V., Hopcroft, J. E., and Ullman, J. D., The Design and Analysis of Computer Algorithms, Addison-Wesley, Reading, MA, 1974.Google Scholar
[AigZ] Aigner, M. and Ziegler, G., Proofs from the Book, Springer, 6th ed., 2018.Google Scholar
[ArrP] Arrowsmith, D. and Place, L., An Introduction to Dynamical Systems, Cambridge Univ. Press, Cambridge, 1990.Google Scholar
[Art] Artin, E., Ein mechanisches System mit quasiergodishen Baknen, Abhandlungen aus dem Mathematishen Seminar der Hamburgishen Universitat 3 (1924), 170– 175.Google Scholar
[ArtM] Artin, M. and Mazur, B., On periodic points, Annals of Math. 81 (1965), 8299.Google Scholar
[Ash1] Ashley, J. J., On the Perron–Frobenius eigenvector for non-negative integral matrices whose largest eigenvalue is integral, Linear Algebra Appl. 94 (1987), 103108.Google Scholar
[Ash2] Ashley, J. J., Performance bounds in constrained sequence coding, Ph.D. Thesis, University of California, Santa Cruz (1987).Google Scholar
[Ash3] Ashley, J. J., A linear bound for sliding block decoder window size, IEEE Trans. Inform. Theory 34 (1988), 389399.Google Scholar
[Ash4] Ashley, J. J., Marker automorphisms of the one-sided d-shift, Ergod. Th. & Dynam. Sys. 10 (1990), 247262.Google Scholar
[Ash5] Ashley, J. J., Bounded-to-1 factors of an aperiodic shift of finite type are 1-to-1 almost everywhere factors also, Ergod. Th. & Dynam. Sys. 10 (1990), 615626.Google Scholar
[Ash6] Ashley, J. J., Resolving factor maps for shifts of finite type with equal entropy, Ergod. Th. & Dynam. Sys. 11 (1991), 219240.Google Scholar
[Ash7] Ashley, J. J., An extension theorem for closing maps of shifts of finite type, Trans. Amer. Math. Soc. 336 (1993), 389420.Google Scholar
[AshB] Ashley, J. J. and Béal, M.-P., A note on the method of poles for code construction, IEEE Trans. Inform. Theory 40 (1994), 512-517.Google Scholar
[AshM] Ashley, J. J. and Marcus, B. H., Canonical encoders for sliding block decoders, SIAM J. Discrete Math 8 (1995), 555-605.Google Scholar
[AshMR1] Ashley, J. J., Marcus, B. H., and Roth, R. M., Construction of encoders with small decoding look-ahead for input-constrained channels, IEEE Trans. Inform. Theory 41 (1995), 5576.Google Scholar
[AshMR2] Ashley, J. J., Marcus, B. H., and Roth, R. M., On the decoding delay of encoders for input-constrained channels, IEEE Trans Info Theory 42 (1996), 19481956.Google Scholar
[AshMT] Ashley, J. J., Marcus, B. H., and Tuncel, S., The classification of one-sided Markov chains, Ergod. Th. & Dynam. Sys. 17 (1997), 269295.Google Scholar
[Bak1] Baker, K., Strong shift equivalence of non-negative integer 2×2 matrices, Ergod. Th. & Dynam. Sys. 3 (1983), 501508.Google Scholar
[Bak2] Baker, K., Strong shift equivalence and shear adjacency of nonnegative square integer matrices, Linear Algebra Appl. 93 (1987), 131147.Google Scholar
[Bea1] Béal, M.-P., Codes circulaires, automates locaux et entropie, Theor. Computer Sci. 57 (1988), 283302.Google Scholar
[Bea2] Béal, M.-P., The method of poles: a coding method for constrained channels, IEEE Trans. Inform. Theory IT-36 (1990), 763772.Google Scholar
[Bea3] Béal, M.-P., Codage Symbolique, Masson, Paris, 1993.Google Scholar
[Bed] Bedford, T., Generating special Markov partitions for hyperbolic toral automorphisms using fractals, Ergod. Th. & Dynam. Sys. 6 (1986), 325333.CrossRefGoogle Scholar
[BelH] Belongie, M. and Heegard, C., Run length limited codes with coding gains from variable length graphs, preprint.Google Scholar
[Berg] Berg, K., On the conjugacy problem for K-systems, PhD Thesis, University of Minnesota, 1967.Google Scholar
[Ber] Berger, R., The Undecidability of the Domino Problem, Mem. Amer. Math. Soc. 66, 1966.Google Scholar
[BerP] Berstel, J. and Perrin, D., Theory of Codes, Academic Press, New York, 1985.Google Scholar
[Bil] Billingsley, P., Probability and Measure, Wiley, New York, 1979.Google Scholar
[Bir1] Birkhoff, G. D., Quelques theorems sur le mouvement des systems dynamiques, Bull. Soc. Math. de France 40 (1912), 305323.Google Scholar
[Bir2] Birkhoff, G. D., Dynamical systems, Amer. Math. Soc. Colloquium Publ. 9 (1927).Google Scholar
[BirM] Birkhoff, G. and Maclane, S., Algebra, Macmillan, 2nd ed., New York, 1979.Google Scholar
[Bla] Blahut, R. E., Digital Transmission of Information, Addison-Wesley, Reading, Massachusetts, 1990.Google Scholar
[BlaH1] Blanchard, F. and Hansel, G., Systemes codés, Theor. Computer Sci. 44 (1986), 1749.Google Scholar
[BlaH2] Blanchard, F. and Hansel, G., Sofic constant-to-one extensions of subshifts of finite type, Proc. Amer. Math. Soc. 112 (1991), 259265.Google Scholar
[BloC] Block, L. S. and Coppel, W. S., Dynamics in One Dimension, Springer–Verlag Lecture Notes in Mathematics 1513, New York, 1992.Google Scholar
[BonM] Bondy, J. and Murty, U., Graph Theory with Applications, Macmillan, London, 1976.Google Scholar
[Boo] Boothby, W. M., An Introduction to Differentiable Manifolds and Riemannian Geometry, Academic Press, Orlando, 1986.Google Scholar
[Bow1] Bowen, R., Markov partitions for Axiom A diffeomorphisms, Amer. J. Math. 92 (1970), 725747.Google Scholar
[Bow2] Bowen, R., Markov partitions and minimal sets for Axiom A diffeomorphisms, Amer. J. Math. 92 (1970), 907918.Google Scholar
[Bow3] Bowen, R., Entropy for group endomorphisms and homogeneous spaces, Trans. Amer. Math. Soc. 153 (1971), 401–414; Errata: 181(1973), 509-510.Google Scholar
[Bow4] Bowen, R., Symbolic dynamics for hyperbolic flows, Amer. J. Math. 95 (1973), 429-460.Google Scholar
[Bow5] Bowen, R., Smooth partitions of Anosov diffeomorphisms are weak Bernoulli, Israel J. Math. 21 (1975), 95100.Google Scholar
[Bow6] Bowen, R., Equilibrium States and the Ergodic Theory of Anosov Diffeomorphisms, Springer Lecture Notes in Math. 470, New York, 1975.Google Scholar
[Bow7] Bowen, R., On Axiom A Diffeomorphisms, AMS–CBMS Reg. Conf. 35, Providence, 1978.Google Scholar
[Bow8] Bowen, R., Markov partitions are not smooth, Proc. Amer. Math. Soc. 71 (1978), 130132.Google Scholar
[BowF] Bowen, R. and Franks, J., Homology for zero-dimensional basic sets, Annals of Math. 106 (1977), 7392.Google Scholar
[BowL] Bowen, R. and Lanford, O. E., Zeta functions of restrictions of the shift transformation, Proc. Symp. Pure Math. A.M.S. 14 (1970), 43–50.Google Scholar
[BowW] Bowen, R. and Walters, P., Expansive one-parameter flows, J. Diff. Eqn. 12 (1972), 180-193.Google Scholar
[Boy1] Boyle, M., Lower entropy factors of sofic systems, Ergod. Th. & Dynam. Sys. 3 (1983), 541557.Google Scholar
[Boy2] Boyle, M., Shift equivalence and the Jordan form away from zero, Ergod. Th. & Dynam. Sys. 4 (1984), 367379.Google Scholar
[Boy3] Boyle, M., Constraints on the degree of a sofic homomorphism and the induced multiplication of measures on unstable sets, Israel J. Math 53 (1986), 5268.Google Scholar
[Boy4] Boyle, M., Almost flow equivalence for hyperbolic basic sets, Topology 31 (1992), 857864.Google Scholar
[Boy5] Boyle, M., Symbolic dynamics and matrices, in Combinatorial and Graph Theoretic Problems in Linear Algebra, IMA Volumes in Math. and its Appl. (ed. R. Brualdi, et. al.) 50, 1993, pp. 1–38.Google Scholar
[Boy6] Boyle, M., Unpublished lecture notes.Google Scholar
[Boy7] Boyle, M., Factoring factor maps, J. London Math. Soc. 57 (1998), 491-502.Google Scholar
[BoyF] Boyle, M. and Fiebig, U.-R., The action of inert finite order automorphisms on finite subsystems of the shift, Ergod. Th. & Dynam. Sys. 11 (1991), 413425.Google Scholar
[BoyFK] Boyle, M., Franks, J., and Kitchens, B., Automorphisms of one-sided subshifts of finite type, Ergod. Th. & Dynam. Sys. 10 (1990), 421449.Google Scholar
[BoyH1] Boyle, M. and Handelman, D., The spectra of nonnegative matrices via symbolic dynamics, Annals of Math. 133 (1991), 249316.Google Scholar
[BoyH2] Boyle, M. and Handelman, D., Algebraic shift equivalence and primitive matrices, Trans. Amer. Math. Soc. 336 (1993), 121149.Google Scholar
[BoyKM] Boyle, M., Kitchens, B., and Marcus, B. H., A note on minimal covers for sofic systems, Proc. Amer. Math. Soc. 95 (1985), 403411.Google Scholar
[BoyK1] Boyle, M. and Krieger, W., Periodic points and automorphisms of the shift, Trans. Amer. Math. Soc. 302 (1987), 125149.Google Scholar
[BoyK2] Boyle, M. and Krieger, W., Almost Markov and shift equivalent sofic systems, Proceedings of Maryland Special Year in Dynamics 1986–87, Springer-Verlag Lecture Notes in Math 1342 (1988), 3393.Google Scholar
[BoyK3] Boyle, M. and Krieger, W., Automorphisms and subsystems of the shift, J. Reine Angew. Math. 437 (1993), 1328.Google Scholar
[BoyLR] Boyle, M., Lind, D., and Rudolph, D., The automorphism group of a shift of finite type, Trans. Amer. Math. Soc. 306 (1988), 71114.Google Scholar
[BoyMT] Boyle, M., Marcus, B. H., and Trow, P., Resolving Maps and the Dimension Group for Shifts of Finite Type, Mem. Amer. Math. Soc. 377, 1987.Google Scholar
[BunS] Bunimovitch, L. A. and Sinai, Y. G., Markov partitions for dispersed billiards, Comm. Math. Phys. 73 (1980), 247–280; erratum: 107(1986), 357–358.Google Scholar
[BunSC] Bunimovitch, L. A., Sinai, Y. G., and Chernov, N., Markov partitions for two-dimensional billiards, Uspekhi Mat. Nauk 45 , no. 3 (1990), 97–134; Russian Math. Surveys, 45 (no.3) (1990), 105-152.Google Scholar
[Caw] Cawley, E., Smooth Markov partitions and toral automorphisms, Ergod. Th. & Dynam. Sys. 11 (1991), 633651.Google Scholar
[Cer] Cerny, J., Poznamka K homogenym s Konoecnymi automati, Mat.–fyz. Cas. SAV. 14 (1964), 208–215.Google Scholar
[ColE] Collet, P. and Eckmann, J.-P., Iterated Maps of the Interval as Dynamical Systems, Birkhauser, Basel, 1981.Google Scholar
[CorC] Cordon, A. and Crochemore, M., Partitioning a graph in O(|A| log2 |V|), Theor. Computer Sci. 19 (1982), 8598.Google Scholar
[CorG] Corneil, D. and Gottlieb, C., An efficient algorithm for graph isomorphism, J. Assoc. Comput. Mach. 17 (1970), 5164.Google Scholar
[Cov1] Coven, E., Endomorphisms of substitution minimal sets, Z. Wahrscheinlichkeitstheorie 20 (1971), 129133.CrossRefGoogle Scholar
[Cov2] Coven, E., Topological entropy of block maps, Proc. Amer. Math. Soc. 78 (1980), 590594.Google Scholar
[CovH] Coven, E. and Hedlund, G. A., Sequences with minimal block growth, Math. Systems Theory 7 (1973), 138153.Google Scholar
[CovK] Coven, E. M. and Keane, M. S., The structure of substitution minimal sets, Trans. Amer. Math. Soc. 162 (1971), 89102.Google Scholar
[CovP1] Coven, E. and Paul, M., Endomorphisms of irreducible shifts of finite type, Math. Systems Theory 8 (1974), 167175.Google Scholar
[CovP2] Coven, E. and Paul, M., Sofic systems, Israel J. Math. 20 (1975), 165177.Google Scholar
[CovP3] Coven, E. and Paul, M., Finite procedures for sofic systems, Monats. Math. 83 (1977), 265278.Google Scholar
[CovT] Cover, T. and Thomas, J., Elements of Information Theory, Wiley, New York, 1991.Google Scholar
[CulKK] Karel Culik II, Juhani Karhumäki, and Kari, Jarkko, A note on synchronized automata and road coloring problem, Internat. J. Found. Comput. Sci 13 (2002), 459471.Google Scholar
[Cun] Cuntz, J., A class of C*-algebras and topological Markov chains II: reducible chains and the Ext-functor for C*-algebras, Inventiones Math. 63 (1981), 25– 40.Google Scholar
[CunK1] Cuntz, J. and Krieger, W., Topological Markov chains with dicyclic dimension groups, J. fur Reine und Angew. Math. 320 (1980), 4451.Google Scholar
[CunK2] Cuntz, J. and Krieger, W., A class of C*-Algebras and topological Markov chains, Inventiones Math. 56 (1980), 251268.Google Scholar
[DasJ] Dastjerdi, D. A. and Jangjoo, S., Dynamics and topology of S-gap shifts, Topology and its Applications 159 (2012), 26542661.Google Scholar
[DekK] Dekking, M. and Keane, M., Mixing properties of substitutions, Z. Wahrscheinlichkeitstheorie 42 (1978), 2333.Google Scholar
[DemGJ] Demongeot, J., Goler, E., and Jchisente, M., Dynamical Systems and Cellular Automata, Academic Press, Orlando, 1985.Google Scholar
[DenGS] Denker, M., Grillenberger, C., and Sigmund, K., Ergodic Theory on Compact Spaces, Springer-Verlag Lecture Notes in Math. 527, New York, 1976.Google Scholar
[Dev] Devaney, R., An Introduction to Chaotic Dynamical Systems, Addison-Wesley, Reading, MA, 1987.Google Scholar
[Dug] Dugundji, J., Topology, Allyn and Bacon, Boston, 1970.Google Scholar
[Edg] Edgar, G. A., Measure, Topology, and Fractal Geometry, Springer, New York, 1990.Google Scholar
[Edw] Edwards, Harold, Riemann’s Zeta-Function, Academic Press, New York, 1974.Google Scholar
[Eff] Effros, E., Dimensions and C–algebras, AMS– CBMS Reg. Conf. 46, Providence, 1981.Google Scholar
[Ell] Ellis, R., Lectures on Topological Dynamics, Benjamin, New York, 1969.Google Scholar
[Eve1] Even, S., On information lossless automata of finite order, IEEE Trans. Elect. Comput. 14 (1965), 561569.Google Scholar
[Eve2] Even, S., Graph Algorithms, Computer Science Press, Potomac, Maryland, 1979.Google Scholar
[FarTW] Farmer, D., Toffoli, T., and Wolfram, S., Automata, Cellular, Proceedings of Interdisciplinary Workshop (Los Alamos, 1983), North–Holland, Eindhoven, 1984.Google Scholar
[FieD1] Fiebig, D., Common closing extensions and finitary regular isomorphism for synchronized systems, in Symbolic Dynamics and Its Applications, Contemporary Mathematics 135 (ed. P. Walters), Providence, 1992, pp. 125–138.Google Scholar
[FieD2] Fiebig, D., Common extensions and hyperbolic factor maps for coded systems, Ergod. Th. & Dynam. Sys. 15 (1995), 517534.Google Scholar
[FieD3] Fiebig, D., Personal communication.Google Scholar
[FieF] Fiebig, D. and Fiebig, U.-R., Covers for coded systems, in Symbolic Dynamics and Its Applications, Contemporary Mathematics 135 (ed. P. Walters), Providence, 1992, pp. 139–180.Google Scholar
[Fin] Finkbeiner, D., An Introduction to Vector Spaces and Linear Transformations, Freeman, San Francisco, 1966.Google Scholar
[Fis1] Fischer, R., Sofic systems and graphs, Monats. Math. 80 (1975), 179186.Google Scholar
[Fis2] Fischer, R., Graphs and symbolic dynamics, Colloq. Math. Soc. János Bólyai: Topics in Information Theory 16 (1975), 229243.Google Scholar
[For1] Forney, G. D., Jr., Convolutional codes I: Algebraic structure, IEEE Trans. Inform. Theory IT-16 (1970), 720738.Google Scholar
[For2] Forney, G. D., Jr., Algebraic structure of convolutional codes, and algebraic system theory, in Mathematical System Theory, (ed. by A. C. Antoulas), Springer-Verlag, 1991, pp. 527–558.CrossRefGoogle Scholar
[ForT] Forney, G. D., Jr. and Trott, M., The dynamics of linear codes over groups: state spaces, trellis diagrams and canonical encoders, IEEE Trans. Inform. Theory 39 (1993), 14911513.Google Scholar
[Fra1] Franaszek, P. A., Sequence-state coding for digital transmission, Bell Sys. Tech. J. 47 (1968), 143155.Google Scholar
[Fra2] Franaszek, P. A., On synchronous variable length coding for discrete noiseless channels, Inform. Control 15 (1969), 155164.Google Scholar
[Fra3] Franaszek, P. A., Sequence-state methods for run-length-limited coding, IBM J. of Research and Development 14 (1970), 376383.Google Scholar
[Fra4] Franaszek, P. A., Run-length-limited variable length coding with error propagation limitation, US Patent 3,689,899 (1972).Google Scholar
[Fra5] Franaszek, P. A., On future-dependent block coding for input-restricted channels, IBM J. of Research and Development 23 (1979), 7581.Google Scholar
[Fra6] Franaszek, P. A., Synchronous bounded delay coding for input restricted channels, IBM J. of Research and Development 24 (1980), 4348.Google Scholar
[Fra7] Franaszek, P. A., A general method for channel coding, IBM J. of Research and Development 24 (1980), 638641.Google Scholar
[Fra8] Franaszek, P. A., Construction of bounded delay codes for discrete noiseless channels,, IBM J. of Research and Development 26 (1982), 506514.Google Scholar
[Fra9] Franaszek, P. A., Coding for constrained channels: a comparison of two approaches, IBM J. of Research and Development 33 (1989), 602607.CrossRefGoogle Scholar
[FraT] Franaszek, P. A. and Thomas, J. A., On the optimization of constrained channel codes, IEEE ISIT (1993).Google Scholar
[Fran1] Franks, J., Homology and Dynamical Systems, AMS–CBMS Reg. Conf. 49, Providence, 1982.Google Scholar
[Fran2] Franks, J., Flow equivalence of subshifts of finite type., Ergod. Th. & Dynam. Sys. 4 (1984), 5366.Google Scholar
[FreWD] French, C., Wolf, J., and Dixon, G., Signaling with special run length constraints for a digital recording channel, IEEE-Magnetics 24 (1988), 20922097.Google Scholar
[Frie] Fried, D., Finitely presented dynamical systems, Ergod. Th. & Dynam. Sys. 7 (1987), 489507.Google Scholar
[Fri1] Friedman, J., A note on state splitting, Proc. Amer. Math. Soc. 92 (1984), 206– 208.Google Scholar
[Fri2] Friedman, J., On the road coloring problem, Proc. Amer. Math. Soc. 110 (1990), 11331135.Google Scholar
[FriO] Friedman, N. and Ornstein, D., On isomorphism of weak Bernoulli transformations, Advances in Math. 5 (1970), 365394.Google Scholar
[Fro] Frobenius, G., Über Matrizen aus nicht negativen Elementen, Sitz. der Preuss. Akad. der Wiss., Berlin (1912), 456477.Google Scholar
[Fuj] Fujiwara, M., Conjugacy for one-sided sofic systems, in Advanced Series in Dynamical Systems, vol.2, Dynamical Systems and Singular Phenomena (ed. by G. Ikegami), World Scientific, Singapore, 1986, pp. 189202.Google Scholar
[FujO] Fujiwara, M. and Osikawa, M., Sofic systems and flow equivalence, Mathematical Reports of the College of General Education, Kyushu University 16 , no. 1 (1987).Google Scholar
[Fur1] Furstenberg, H., Stationary Processes and Prediction Theory, Princeton Univ. Press, Princeton, 1960.Google Scholar
[Fur2] Furstenberg, H., Disjointness in ergodic theory, minimal sets, and a problem in Diophantine approximation, Math. Systems Theory 1 (1967), 149.Google Scholar
[Gan] Gantmacher, F. R., Matrix Theory, Volume II, Chelsea Publishing Company, New York, 1960.Google Scholar
[GelP] Geller, W. and Propp, J., The fundamental group for a Z2-shift, Ergod. Th. & Dynam. Sys. 15 (1995), 1091-1118.Google Scholar
[Gil] Gilman, R., Classes of linear automata, Ergod. Th. & Dynam. Sys. 7 (1987), 105118.Google Scholar
[GolLS] Goldberger, J., Lind, D., and Smorodinsky, M., The entropies of renewal systems, Israel J. Math. 33 (1991), 123.Google Scholar
[Goo] Goodwyn, L. W., Comparing topological entropy with measure-theoretic entropy, Amer. J. Math. 94 (1972), 366388.Google Scholar
[Got] Gottschalk, W. H., Substitution minimal sets, Trans. Amer. Math. Soc. 109 (1963), 467491.Google Scholar
[GotH] Gottschalk, W. H. and Hedlund, G. A., Topological Dynamics, Amer. Math. Soc. Colloquium Publ. 36 (1955).Google Scholar
[Gra] Gray, R., Sliding-block source coding, IEEE Trans. Inform. Theory 21 (1975), 357368.Google Scholar
[Gre] Greenberg, M., Lectures on Algebraic Topology, Benjamin, Reading, MA, 1968.Google Scholar
[Gur1] Gurevic, B. M., Topological entropy of enumerable Markov chains, Soviet Math. Dokl. 4 ,10 (1969), 911915.Google Scholar
[Gur2] Gurevic, B. M., Shift entropy and Markov measures in the path space of a denumerable graph, Soviet Math. Dokl. 3 ,11 (1970), 744747.Google Scholar
[Had] Hadamard, J., Les surfaces a courbures opposées et leurs lignes geodesiques, Journal de Mathematiques Pures et Appliqué 4 (1898), 2773.Google Scholar
[HahK] Hahn, F. and Katznelson, Y., On the entropy of uniquely ergodic transformations, Trans. Amer. Math. Soc. 126 (1967), 335360.Google Scholar
[HalV] Halmos, P. and Von Neumann, J., Operator methods in classical mechanics, Annals of Math. 43 (1942), 332350.Google Scholar
[HanK] Handel, M. and Kitchens, B., Metrics and entropy for non-compact spaces, Israel J. Math. 91 (1995), 253-271.Google Scholar
[Han1] Handelman, D., Positive matrices and dimension groups affiliated to C*-Algebras and topological Markov chains, J. Operator Th. 6 (1981), 5574.Google Scholar
[Han2] Handelman, D., Eventually positive matrices with rational eigenvectors, Ergod. Th. & Dynam. Sys. 7 (1987), 193196.Google Scholar
[Har] Hartmann, P., Ordinary Differential Equations, Wiley, New York, 1964.Google Scholar
[HarW] Hardy, G. H. and Wright, E. M., An Introduction to the Theory of Numbers (Fifth Ed.), Oxford Univ. Press, Oxford, 1979.Google Scholar
[Has] Hassner, M., A nonprobabilistic source and channel coding theory, Ph.D. Thesis, University of California at Los Angeles (1980).Google Scholar
[Hed1] Hedlund, G. A., On the metrical transitivity of the geodesics on a surface of constant negative curvature, Proc. Nat. Acad. of Sci. 20 (1934), 87140.Google Scholar
[Hed2] Hedlund, G. A., On the metrical transitivity of the geodesics on a closed surface of constant negative curvature, Annals of Math. 35 (1934), 787808.Google Scholar
[Hed3] Hedlund, G. A., The dynamics of geodesic flows, Bull. Amer. Math. Soc. 45 (1939), 241260.Google Scholar
[Hed4] Hedlund, G. A., Sturmian minimal sets, Amer. J. Math. 66 (1944), 605620.Google Scholar
[Hed5] Hedlund, G. A., Endomorphisms and automorphisms of the shift dynamical system, Math. Systems Theory 3 (1969), 320375.Google Scholar
[Hed6] Hedlund, G. A., What is symbolic dynamics?, Unpublished manuscript.Google Scholar
[HeeMS] Heegard, C. D., Marcus, B. H., and Siegel, P. H., Variable-length state splitting with applications to average runlength-constrained (ARC) codes, IEEE Trans. Inform. Theory 37 (1991), 759777.Google Scholar
[Her] Herstein, I., Topics in Algebra 2nd ed., Wiley, New York, 1975.Google Scholar
[Hil] Hill, G. W., Researches in the lunar theory, Amer. J. Math. 1 (1878), 5–26, 129–147, 245–260.Google Scholar
[HirS] Hirsch, M. and Smale, S., Differential Equations, Dynamical Systems and Linear Algebra, Academic Press, New York, 1974.Google Scholar
[Hof1] Hofbauer, F., β-shifts have unique maximal measure, Monats. Math. 85 (1978), 189–198.Google Scholar
[Hof2] Hofbauer, F., On intrinsic ergodicity of piecewise monotonic transformations with positive entropy, Israel J. Math 34 (1979), 213236.Google Scholar
[Hof3] Hofbauer, F., On intrinsic ergodicity of piecewise monotonic transformations with positive entropy II, Israel J. Math 38 (1981), 107115.Google Scholar
[Hof4] Hofbauer, F., The structure of piecewise monotonic transformations, Ergod. Th. & Dynam. Sys. 1 (1981), 159-178.Google Scholar
[Hof5] Hofbauer, F., Piecewise invertible dynamical systems, Prob. Th. and Rel. Fields 72 (1986), 359386.Google Scholar
[Hol1] Hollmann, H. D. L., A block decodable (d, k) = (1, 8) runlength-limited rate 8/12 code, IEEE Trans. Inform. Theory 40 (1994), 1292-1296.Google Scholar
[Hol2] Hollmann, H. D. L., On the construction of bounded-delay encodable codes for constrained systems, IEEE Trans. Inform. Theory 41 (1995), 1354 – 1378.Google Scholar
[Hop1] Hopf, E., Fuchsian groups and ergodic theory, Trans. Amer. Math. Soc. 39 (1936), 299-314.Google Scholar
[Hop2] Hopf, E., Statitstik der geodatischen Linien Mannigfaltigkeiten negativer Krummung, S.-B. Saechsischer Akad. Wiss. Math.-Nat. K1. 91 (1939), 261-304.Google Scholar
[HopU] Hopcroft, J. E. and Ullman, J. D., Introduction to Automata Theory, Languages, and Computation, Addison-Wesley, Reading, 1979.Google Scholar
[Hua1] Huang, D., Flow equivalence of reducible shifts of finite type, Ergod. Th. & Dynam. Sys. 14 (1994), 695720.Google Scholar
[Hua2] Huang, D., Flow equivalence of reducible shifts of finite type and Cuntz-Krieger algebras, J. Reine Angew. Math 462 (1995), 185217.Google Scholar
[Huf1] Huffman, D. A., The synthesis of sequential switching circuits, J. Franklin Inst. 257 (1954), 161–190 & 275–303.Google Scholar
[Huf2] Huffman, D. A., Canonical forms for information lossless finite-state machines, IRE Trans. Circuit Theory 6 (1959, Special Supplement), 41–59.Google Scholar
[HurKC] Hurd, L., Kari, J., and Culik, K., The topological entropy of cellular automata is uncomputable, Ergod. Th. & Dynam. Sys. 12 (1992), 255265.Google Scholar
[Imm1] Immink, K. A. S., Runlength-limited sequences, Proc. IEEE 78 (1990), 1745– 1759.Google Scholar
[Imm2] Immink, K. A. S., Coding Techniques for Digital Recorders, Prentice-Hall, New York, 1991.Google Scholar
[Imm3] Immink, K. A. S., Block-decodable runlength-limited codes via look-ahead technique, Phillips J. Res. 46 (1992), 293310.Google Scholar
[Imm4] Immink, K. A. S., Constructions of almost block decodable runlength-limited codes, IEEE Transactions on Information Theory 41 (1995), 284287.Google Scholar
[JacK] Jacobs, K. and Keane, M., 0-1 sequences of Toeplitz type, Z. Wahrscheinlichkeitstheorie 13 (1969), 123131.Google Scholar
[Jon] Jonoska, N., Sofic shifts with synchronizing presentations, Theor. Computer Sci. 158 (1996), 81115.Google Scholar
[Kak] Kakutani, S., Induced measure-preserving transformations, Proc. Japan Acad. 19 (1943), 635641.Google Scholar
[Kam] Kamabe, H., Minimum scope for sliding block decoder mappings, IEEE Trans. Inform. Theory 35 (1989), 13351340.CrossRefGoogle Scholar
[Kap] Kaplansky, I., Infinite Abelian Groups, Univ. of Michigan Press, Ann Arbor, 1954.Google Scholar
[KarM] Karabed, R. and Marcus, B. H., Sliding-block coding for input-restricted channels, IEEE Trans. Inform. Theory 34 (1988), 226.Google Scholar
[Kas] Kastelyn, P. W., The statistics of dimers on a lattice, Physica A 27 (1961), 12091225.Google Scholar
[KatH] Katok, A. and Hasselblatt, B., Introduction to the Modern Theory of Dynamical Systems, Cambridge Univ. Press, Cambridge, 1995.Google Scholar
[Kea1] Keane, M. S., Generalized Morse sequences, Z. Wahrscheinlichkeitstheorie 10 (1968), 335353.Google Scholar
[Kea2] Keane, M. S., Ergodic theory and subshifts of finite type, in Ergodic Theory, Symbolic Dynamics and Hyperbolic Spaces (ed. T. Bedford, et. al.), Oxford Univ. Press, Oxford, 1991, pp. 35-70.Google Scholar
[KeaS1] Keane, M. and Smorodinsky, M., Bernoulli schemes of the same entropy are finitarily isomorphic, Annals of Math. 109 (1979), 397406.Google Scholar
[KeaS2] Keane, M. and Smorodinsky, M., Finitary isomorphisms of irreducible Markov shifts, Israel J. Math 34 (1979), 281286.Google Scholar
[KemS] Kemeny, J. and Snell, J., Finite Markov Chains, Van Nostrand, Princeton, 1960.Google Scholar
[KhaN1] Khayrallah, Z. A. and Neuhoff, D., Subshift models and finite-state codes for input-constrained noiseless channels: a tutorial, EE Tech Report, Univ. Delaware, 90-9-1, 1990.Google Scholar
[KhaN2] Khayrallah, Z. A. and Neuhoff, D., On the window size of decoders for input constrained channels, Proc. Internat. Symp. Information Theory and Its Applic. (1990), 1-2.5–1-2.7.Google Scholar
[KimOR] Kim, Ki Hang, Ormes, Nicholas A., and Roush, Fred W., The spectra of nonnegative integer matrices via formal power series, J. Amer. Math. Soc. 13 (2000), 773–806.Google Scholar
[KimR1] Kim, K. H. and Roush, F. W., Some results on decidability of shift equivalence, J. Combinatorics, Info. Sys. Sci. 4 (1979), 123–146.Google Scholar
[KimR2] Kim, K. H. and Roush, F. W., On strong shift equivalence over a Boolean semiring, Ergod. Th. & Dynam. Sys 6 (1986), 8197.Google Scholar
[KimR3] Kim, K. H. and Roush, F. W., Decidability of shift equivalence, Proceedings of Maryland Special Year in Dynamics 1986–87, Springer-Verlag Lecture Notes in Math. 1342 (1988), 374424.Google Scholar
[KimR4] Kimand, K. H. Roush, F. W., Decidability of epimorphisms of dimension groups and certain modules, Ergod. Th. & Dynam. Sys. 9 (1989), 493497.Google Scholar
[KimR5] Kim, K. H. and Roush, F. W., An algorithm for sofic shift equivalence, Ergod. Th. & Dynam. Sys. 10 (1990), 381393.Google Scholar
[KimR6] Kim, K. H. and Roush, F. W., Full shifts over R+ and invariant tetrahedra, P.U.M.A. Ser. B 1 (1990), 251–256.Google Scholar
[KimR7] Kimand, K. H. Roush, F. W., Path components of matrices and shift equivalence over Q+, Linear Algebra Appl. 145 (1991), 177186.Google Scholar
[KimR8] Kim, K. H. and Roush, F. W., Solution of two conjectures in symbolic dynamics, Proc. Amer. Math. Soc. 112 (1991), 11631168.Google Scholar
[KimR9] Kim, K. H. and Roush, F. W., On the structure of inert automorphisms of subshifts, P.U.M.A. Ser. B 2 (1991), 3-22.Google Scholar
[KimR10] Kim, K. H. and Roush, F. W., Strong shift equivalence of boolean and positive rational matrices, Linear Algebra Appl. 161 (1992), 153164.Google Scholar
[KimR11] Kimand, K. H. Roush, F. W., Williams’ conjecture is false for reducible subshifts, J. Amer. Math. Soc. 5 (1992), 213215.Google Scholar
[KimR12] Kim, K. H. and Roush, F. W., The Williams’ Conjecture is false for irreducible subshifts, Annals Math. 149 (1999), 545558.Google Scholar
[KimRW1] Kim, K. H., Roush, F. W., and Wagoner, J. B., Automorphisms of the dimension group and gyration numbers of automorphisms of a shift, J. Amer. Math. Soc. 5 (1992), 191211.Google Scholar
[KimRW2] Kim, K. H., Roush, F. W., and Wagoner, J. B., Characterization of inert actions on periodic points I and II, Forum Math 12 (2000), 565-602, 671-712.Google Scholar
[Kit1] Kitchens, B., Continuity properties of factor maps in ergodic theory, Ph.D. Thesis, University of North Carolina, Chapel Hill (1981).Google Scholar
[Kit2] Kitchens, B., An invariant for continuous factors of Markov shifts, Proc. Amer. Math. Soc. 83 (1981), 825828.Google Scholar
[Kit3] Kitchens, B., Expansive dynamics on zero-dimensional groups, Ergod. Th. & Dynam. Sys. 7 (1987), 249261.Google Scholar
[Kit4] Kitchens, Bruce, Dynamics, Symbolic: One-sided, Two-sided and Countable State Markov Shifts, Springer Universitext, Berlin, 1998.Google Scholar
[KitMT] Kitchens, B., Marcus, B. and Trow, P., Eventual factor maps and compositions of closing maps, Ergod. Th. & Dynam. Sys. 11 (1991), 85113.Google Scholar
[KitS1] Kitchens, B. and Schmidt, K., Periodic points, decidability and Markov subgroups, Dynamical Systems, Proceedings of the special year (J. C. Alexander, ed.), Springer Lecture Notes in Math. 1342 (1988), 440–454.Google Scholar
[KitS2] Kitchens, B. and Schmidt, K., Automorphisms of compact groups, Ergod. Th. & Dynam. Sys. 9 (1989), 691735.Google Scholar
[KitS3] Kitchens, B. and Schmidt, K., Markov subgroups of (Z/2Z)Z2 , in Symbolic Dynamics and Its Applications, Contemporary Mathematics 135 (ed. P. Walters), Providence, 1992, pp. 265–283.Google Scholar
[KitS4] Kitchens, B. and Schmidt, K., Mixing sets and relative entropies for higher-dimensional Markov shifts, Ergod. Th. & Dynam. Sys. 13 (1993), 705735.Google Scholar
[Kle] Klein, B. G., Homomorphisms of symbolic dynamical systems, Math. Systems Theory 6 (1972), 107122.Google Scholar
[Koe] Koebe, P., Riemannian Manigfaltigkesten und nichteuclidische Raumformen IV, Sitz. der Preuss. Akad. der Wiss. (1929), 414457.Google Scholar
[Koh1] Kohavi, Z., Minimization of incompletely specified switching circuits, Research Report of Polytechnic Institute of Brooklyn, New York (1962).Google Scholar
[Koh2] Kohavi, Z., Switching and Finite Automata Theory, Second Ed., Tata McGraw-Hill, New Delhi, 1978.Google Scholar
[Kol] Kolmogorov, A. N., New metric invariants of transitive dynamical systems and automorphisms of Lebesgue spaces, Dokl. Akad. Nauk SSSR 119 (1958), 861– 864.Google Scholar
[Kri1] Krieger, W., On entropy and generators of measure preserving transformations, Trans. Amer. Math. Soc. 149 (1970), 453–464, erratum: 168 (1972), 519.Google Scholar
[Kri2] Krieger, W., On the uniqueness of the equilibrium state, Math. Systems Theory 8 (1974), 97104.Google Scholar
[Kri3] Krieger, W., On a dimension for a class of homeomorphism groups, Math. Ann. 252 (1980), 8795.Google Scholar
[Kri4] Krieger, W., On dimension functions and topological Markov chains, Inventiones Math. 56 (1980), 239250.Google Scholar
[Kri5] Krieger, W., On the finitary coding of topological Markov chains, Available at www.numdam.org/item/RCP25 1981 29 67 0/, R.C.P. 25, Université Louis Pasteur, Institute de Recherche Mathematiques Avancee, Strasbourg 29 (1981), 67-92.Google Scholar
[Kri6] Krieger, W., On the subsystems of topological Markov chains, Ergod. Th. & Dynam. Sys. 2 (1982), 195202.Google Scholar
[Kri7] Krieger, W., On the finitary isomorphisms of Markov shifts that have finite expected coding time,, Z. Wahrscheinlichkeitstheorie 65 (1983), 323328.Google Scholar
[Kri8] Krieger, W., On sofic systems I, Israel J. Math. 48 (1984), 305330.Google Scholar
[Kri9] Krieger, W., On sofic systems II, Israel J. Math. 60 (1987), 167176.Google Scholar
[KruT] Kruger, T. and Troubetzkoy, S., Markov partitions and shadowing for non-uniformly hyperbolic systems with singularities, Ergod. Th. & Dynam. Sys. 12 (1992), 487508.Google Scholar
[Kur] Kurmit, A. A., Information–Lossless Automata of Finite Order, Wiley (translated from Russian), New York, 1974.Google Scholar
[Led] Ledrappier, François, Un champ markovien peut être d’entropie nulle et mélangeant, C. R. Acad. Sci. Paris Sér. A-B 287 (1978), A561–A563.Google Scholar
[LemC] Lempel, A. and Cohn, M., Look-ahead coding for input-restricted channels, IEEE Trans. Inform. Theory 28 (1982), 933937.Google Scholar
[LinC] Lin, S. and Costello, D. J., Jr., Error Control Coding, Fundamentals and Applications, Prentice-Hall, Englewood Cliffs, 1983.Google Scholar
[Lin1] Lind, D., Ergodic group automorphisms and specification, Springer Lecture Notes in Math. 729 (1978), 93104.Google Scholar
[Lin2] Lind, D., Dynamical properties of quasihyperbolic toral automorphisms, Ergod. Th. & Dynam. Sys. 2 (1982), 4968.Google Scholar
[Lin3] Lind, D., Entropies and factorizations of topological Markov shifts, Bull. Amer. Math. Soc. 9 (1983), 219222.Google Scholar
[Lin4] Lind, D., The entropies of topological Markov shifts and a related class of algebraic integers, Ergod. Th. & Dynam. Sys. 4 (1984), 283300.Google Scholar
[Lin5] Lind, D., Applications of ergodic theory and sofic systems to cellular automata, Physica D 10D (1984), 3644.Google Scholar
[Lin6] Lind, D., The spectra of topological Markov shifts, Ergod. Th. & Dynam. Sys. 6 (1986), 571582.Google Scholar
[Lin7] Lind, D., Entropies of automorphisms of topological Markov shifts, Proc. Amer. Math. Soc. 99 (1987), 589595.Google Scholar
[Lin8] Lind, D., Perturbations of shifts of finite type, SIAM J. Discrete Math. 2 (1989), 350365.Google Scholar
[Lin9] Lind, D., A zeta function for Zd-actions, London Math. Soc. Lecture Note Ser. (Proceedings of the Warwick Symposium on Zd -Actions, 1993-1994) 228 (1996), 433–450.Google Scholar
[LinSW] Lind, D., Schmidt, K., and Ward, T., Mahler measure and entropy for commuting automorphisms of compact groups, Inventiones Math. 101 (1990), 593629.Google Scholar
[LoeM] Loeliger, H. A. and Mittelholzer, T., Convolutional codes over groups, IEEE Trans Info Theory 42 (1996), 1660-1686.Google Scholar
[Mane] Mañé, R., Ergodic Theory and Differentiable Dynamics, Springer, New York, 1987.Google Scholar
[Man] Manning, A., Axiom A diffeomorphisms have rational zeta functions, Bull. London Math. Soc. 3 (1971), 215220.Google Scholar
[Mar1] Marcus, B., Factors and extensions of full shifts, Monats. Math. 88 (1979), 239247.Google Scholar
[Mar2] Marcus, B. H., Sofic systems and encoding data, IEEE Trans. Inform. Theory 31 (1985), 366377.Google Scholar
[MarR] Marcus, B. H. and Roth, R. M., Bounds on the number of states in encoder graphs for input-constrained channels, IEEE Trans. Inform. Theory IT-37 (1991), 742– 758.Google Scholar
[MarRS] Marcus, B. H., Roth, R. M., and Siegel, P. H., Constrained systems and coding for recording, chapter in Handbook on Coding Theory (ed. by R. Brualdi, C. Huffman and V. Pless), Elsevier (1998), 1635-1764.Google Scholar
[MarS] Marcus, B. and Siegel, P. H., Constrained codes for partial response channels, Proc. Beijing International Workshop on Information Theory (1988), DI-1.1– 1.4.Google Scholar
[MarSW] Marcus, B. H., Siegel, P. H., and Wolf, J. K., Finite-state modulation codes for data storage, IEEE J. Selected Areas in Communications 10 (1992), 537.Google Scholar
[MarT1] Marcus, B. and Tuncel, S., Entropy at a weight-per-symbol and embeddings of Markov chains, Inventiones Math. 102 (1990), 235266.Google Scholar
[MarT2] Marcus, B. and Tuncel, S., The weight-per-symbol polytope and scaffolds of invariants associated with Markov chains, Ergod. Th. & Dynam. Sys. 11 (1991), 129180.Google Scholar
[MarT3] Marcus, B. and Tuncel, S., Matrices of polynomials, positivity, and finite equivalence of Markov chains, J. Amer. Math. Soc. 6 (1993), 131147.Google Scholar
[MarP1] Markley, N. and Paul, M., Almost automorphic symbolic minimal sets without unique ergodicity, Israel J. Math. 34 (1979), 259272.Google Scholar
[MarP2] Markley, N. and Paul, M., Matrix subshifts for Zν symbolic dynamics, Proc. London Math. Soc. 43 (1981), 251272.Google Scholar
[MarP3] Markley, N. and Paul, M., Maximal measures and entropy for Zν subshifts of finite type, in Classical Mechanics and Dynamical Systems (ed. R. Devaney and Z. Nitecki), Dekker Notes 70, 135–157.Google Scholar
[Mart1] Martin, J., Substitution minimal flows, Amer. J. Math. 93 (1971), 503526.Google Scholar
[Mart2] Martin, J., Minimal flows arising from substitutions of non-constant length, Math. Systems Theory 7 (1973), 7282.Google Scholar
[McE] McElieece, R., The Theory of Information and Coding, Addison-Wesley, Reading, 1977.Google Scholar
[MilT] Miles, G. and Thomas, R. K., The breakdown of automorphisms of compact topological groups, Studies in Probability and Ergodic Theory, Advances in Mathematics Supplementary Studies 2 (1978), 207218.Google Scholar
[Mil] Miller, A., Transmission, U. S. Patent 3,108,261 (1963).Google Scholar
[Min] Minc, H., Nonnegative Matrices, Wiley, New York, 1988.Google Scholar
[Mon] Monforte, John, The digital reproduction of sound, Scientific American (Dec., 1984), 78–84.Google Scholar
[Moo] Moore, E. F., Gedanken-experiments on sequential machines, Automata Studies, Annals of Math. Studies, Princeton Univ. Press, Princeton, 1956, pp. 129153.Google Scholar
[Mor1] Morse, M., A one-to-one representation of geodesics on a surface of negative curvature, Amer. J. Math. 43 (1921), 3351.Google Scholar
[Mor2] Morse, M., Recurrent geodesics on a surface of negative curvature, Trans. Amer. Math. Soc. 22 (1921), 84100.Google Scholar
[Mor3] Morse, M., Symbolic Dynamics, Lectures of 1937–1938, Notes by Rufus Olden-burger, University Microfilms, 300 N. Zeeb Road, Ann Arbor, MI 48106.Google Scholar
[MorH1] Morse, M. and Hedlund, G. A., Symbolic dynamics, Amer. J. Math. 60 (1938), 815866.Google Scholar
[MorH2] Morse, M. and Hedlund, G. A., Symbolic dynamics II. Sturmian trajectories, Amer. J. Math. 62 (1940), 1–42.Google Scholar
[MorH3] Morse, M. and Hedlund, G. A., Unending chess, symbolic dynamics and a problem in semigroups, Duke Math. J. 11 (1944), 17.Google Scholar
[Moz1] Mozes, S., Tilings, substitutions and the dynamical systems generated by them, J. d’Analyse Math. 53 (1989), 139186.Google Scholar
[Moz2] Mozes, S., A zero entropy, mixing of all orders tiling system, in Symbolic Dynamics and Its Applications, Contemporary Mathematics 135 (ed. P. Walters), Providence, 1992, pp. 319–326.Google Scholar
[Nas1] Nasu, M., Uniformly finite-to-one and onto extensions of homomorphisms between strongly connected graphs, Discrete Math. 39 (1982), 171197.Google Scholar
[Nas2] Nasu, M., Constant-to-one and onto global maps of homomorphisms between strongly connected graphs, Ergod. Th. & Dynam. Sys. 3 (1983), 387411.Google Scholar
[Nas3] Nasu, M., An invariant for bounded-to-one factor maps between transitive sofic subshifts, Ergod. Th. & Dynam. Sys. 5 (1985), 89105.Google Scholar
[Nas4] Nasu, M., Topological conjugacy for sofic systems, Ergod. Th. & Dynam. Sys. 6 (1986), 265280.Google Scholar
[Nas5] Nasu, M., Topological conjugacy for sofic systems and extensions of automorphisms of finite subsystems of topological Markov shifts, Proceedings of Maryland Special Year in Dynamics 1986-87, Springer-Verlag Lecture Notes in Math. 1342 (1988), 564607.Google Scholar
[Nas6] Nasu, M., Textile Automorphisms, Mem. Amer. Math. Soc. 546, 1995.Google Scholar
[Newh] Newhouse, S., On some results of Hofbauer on maps of the interval, in Dynamical Systems and Related Topics (ed. by K. Shiraiwa), World Scientific, Singapore, 1992, pp. 407421.Google Scholar
[New] Newman, M., Integral Matrices, Academic Press, New York, 1972.Google Scholar
[Nie1] Nielsen, J., Zur Topologie der geschlossenen zweiseitgen Flachen, Mathematik-erkongresses i Kopenhavn (1925), 263–358.Google Scholar
[Nie2] Nielsen, J., Untersuchungen zur Topologie der geschlossenen zweiseitigen Flachen, Acta Mathematica 50 (1927), 189358.Google Scholar
[Nit] Nitecki, Z., Differentiable Dynamics, M.I.T. Press, Cambridge, MA, 1971.Google Scholar
[NivZ] Niven, I. and Zuckerman, H. S., An Introduction to the Theory of Numbers, Wiley, New York, 1980.Google Scholar
[Obr] O’Brien, G. L., The road coloring problem, Israel J. Math. 39 (1981), 145154.Google Scholar
[Orn] Ornstein, D., Bernoulli shifts with the same entropy are isomorphic, Advances in Math. 4 (1970), 337352.Google Scholar
[Par1] Parry, W., Intrinsic Markov chains, Trans. Amer. Math. Soc. 112 (1964), 5566.Google Scholar
[Par2] Parry, W., Symbolic dynamics and transformations of the unit interval, Trans. Amer. Math. Soc. 122 (1966), 368378.Google Scholar
[Par3] Parry, W., A finitary classification of topological Markov chains and sofic systems, Bull. London Math. Soc. 9 (1977), 8692.Google Scholar
[Par4] Parry, W., Finitary isomorphisms with finite expected code-lengths, Bull. London Math. Soc. 11 (1979), 170176.Google Scholar
[Par5] Parry, W., Notes on coding problems for finite state processes, Bull. London Math. Soc. 23 (1991), 133.Google Scholar
[ParP] Parry, W. and Pollicott, M., Zeta Functions and the Periodic Orbit Structure of Hyperbolic Dynamical Systems, Astérisque (Soc. Math. de France) 187–188 (1990).Google Scholar
[ParS] Parry, W. and Schmidt, K., Natural coefficients and invariants for Markov shifts, Inventiones Math. 76 (1984), 1532.Google Scholar
[ParSu] Parry, W. and Sullivan, D., A topological invariant for flows on one-dimensional spaces, Topology 14 (1975), 297299.Google Scholar
[ParT1] Parry, W. and Tuncel, S., On the classification of Markov chains by finite equivalence, Ergod. Th. & Dynam. Sys. 1 (1981), 303335.Google Scholar
[ParT2] Parry, W. and Tuncel, S., Classification Problems in Ergodic Theory, LMS Lecture Note Series 67, Cambridge Univ. Press, Cambridge, 1982.Google Scholar
[ParW] Parry, W. and Williams, R. F., Block coding and a zeta function for finite Markov chains, Proc. London Math. Soc. 35 (1977), 483495.Google Scholar
[Pat] Patel, A. M., Zero-modulation encoding in magnetic recording, IBM J. of Research and Development 19 (1975), 366378.Google Scholar
[PerRS] Perles, M., Rabin, M. O., and Shamir, E., The theory of definite automata, IEEE. Trans. Electron. Computers 12 (1963), 233243.Google Scholar
[Perr] Perrin, D., On positive matrices, Theoret. Computer Sci. 94 (1992), 357366.Google Scholar
[PerS] Perrin, D. and Schutzenberger, M-P, Synchronizing prefix codes and automata and the road coloring problem, in Symbolic Dynamics and Its Applications, Contemporary Mathematics 135 (ed. P. Walters), 1992, pp. 295–318.Google Scholar
[Per] Perron, O., Zur Theorie der Matrizen, Math. Ann. 64 (1907), 248263.Google Scholar
[Pet1] Petersen, K. E., A topologically strongly mixing symbolic minimal set, Trans. Amer. Math. Soc. 148 (1970), 603612.Google Scholar
[Pet2] Petersen, K., Chains, entropy, coding, Ergod. Th. & Dynam. Sys. 6 (1986), 415448.Google Scholar
[Pet3] Petersen, K., Ergodic Theory, Cambridge Univ. Press, Cambridge, 1989.Google Scholar
[Pin] Pin, J. E., On two combinatorial problems arising from automata theory, Annals of Discrete Math. 17 (1983), 535548.Google Scholar
[Pir] Piret, P., Convolutional Codes, MIT Press, Cambridge, MA, 1988.Google Scholar
[Poi] Poincare, H., Sur les courbes definés par les equationes differentieles, J. Math. Pures et Appliqués 4 (1885), 167244.Google Scholar
[Pol] Pollard, H., The Theory of Algebraic Numbers, MAA Carus Math. Monographs 9, New York, 1961.Google Scholar
[ProM] Protter, M. H. and Morrey, C. B., A First Course in Real Analysis, Undergraduate Texts in Mathematics, Springer-Verlag, New York, 1977.Google Scholar
[Pro] Prouhet, E., Memoire sur quelques relations entre les puissance des nombres, CR Acad. Sci., Paris 33 (1851), 31.Google Scholar
[Que] Queffélec, M., Substitution Dynamical Systems–Spectral Analysis, Springer–Verlag Lecture Notes in Math. 1294, New York, 1987.Google Scholar
[RabS] Rabin, M. and Scott, D., Finite automata and their decision procedures, IBM J. of Research and Development 3 (1959), 114125.Google Scholar
[Rad] Radin, C., Global order from local sources, Bull. Amer. Math. Soc. 25 (1991), 335364.Google Scholar
[Rat] Ratner, M., Invariant measure with respect to an Anosov flow on a 3-dimensional manifold, Soviet Math. Doklady 10 (1969), 586588.Google Scholar
[Res] Restivo, A., Finitely generated sofic systems, Theor. Computer Sci. 65 (1989), 265270.Google Scholar
[Rob] Robinson, R. M., Undecidability and nonperiodicity for tilings of the plane, Inventiones Math. 12 (1971), 177209.Google Scholar
[Rok1] Rokhlin, V., A “general” measure-preserving transformation is not mixing, Dokl. Akad. Nauk SSSR 60 (1948), 349351.Google Scholar
[Rok2] Rokhlin, V., Selected topics in metric theory of dynamical systems, Uspekhi Mat. Nauk 4 (1949), 57–128; English translation in Amer. Math. Soc. Transl. (Ser. 2) 49 (1966), 171–240.Google Scholar
[Rok3] Rokhlin, V. A., On endomorphisms of compact commutative groups, Izvestiya Akad. Nauk SSSR Ser. Mat. (Russian) 13 (1949), 329340.Google Scholar
[Roy] Royden, H. L., Real Analysis, Macmillan, New York, 1968.Google Scholar
[Rud] Rudin, W., Principles of Mathematical Analysis 3rd ed., McGraw–Hill, New York, 1976.Google Scholar
[Rudo] Rudolph, D., Fundamentals of Measurable Dynamics, Oxford Univ. Press, New York, 1990.Google Scholar
[Rue1] Ruelle, D., Statistical Mechanics: Rigorous Results, Benjamin, New York, 1969.Google Scholar
[Rue2] Ruelle, D., Elements of Differentiable Dynamics and Bifurcation Theory, Academic Press, Boston, 1989.Google Scholar
[Rue3] Ruelle, D., Dynamical Zeta Functions for Piecewise Monotone Maps of the Interval, CRM Monograph Series, AMS, Providence, 1994.Google Scholar
[Rya1] Ryan, J., The shift and commutativity, Math. Systems Theory 6 (1972), 8285.Google Scholar
[Rya2] Ryan, J., The shift and commutativity II, Math. Systems Theory 8 (1974), 249– 250.Google Scholar
[Sal1] Salama, I. A., Ph.D. Thesis, University of North Carolina, Chapel Hill (1984).Google Scholar
[Sal2] Salama, I. A., Topological entropy and recurrence of countable chains, Pacific J. Math. 134 (1988), 325–341; erratum 140 (1989), 397–398.Google Scholar
[Sal3] Salama, I. A., On the recurrence of countable topological Markov chains, in Symbolic Dynamics and Its Applications, Contemporary Mathematics 135 (ed. P. Walters), Providence, 1992, pp. 349–360.Google Scholar
[SaSo] Salomaa, A. and Soittola, M., Automata-Theoretic Aspects of Formal Power Series, Springer-Verlag, New York, 1978.Google Scholar
[Sch1] Schmidt, K., Invariants for finitary isomorphisms with finite expected code lengths, Inventiones Math. 76 (1984), 3340.Google Scholar
[Sch2] Schmidt, K., Algebraic Ideas in Ergodic Theory, AMS–CBMS Reg. Conf. 76, Providence, 1990.Google Scholar
[Sch3] Schmidt, K., Dynamical Systems of Algebraic Origin, Birkhauser, New York, 1995.Google Scholar
[Sen] Seneta, E., Non-negative Matrices and Markov Chains (Second Ed.), Springer, New York, 1980.Google Scholar
[Ser] Series, C., Symbolic dynamics for geodesic flows, Acta Math. 146 (1981), 103– 128.Google Scholar
[Sha] Shannon, C., A mathematical theory of communication, Bell Sys. Tech. J. 27 (1948), 379423, 623–656.Google Scholar
[Shi] Shields, P., The Theory of Bernoulli Shifts, Univ. of Chicago Press, Chicago, 1973.Google Scholar
[Sim] Simmons, G., Introduction to Topology and Modern Analysis, McGraw–Hill, New York, 1963.Google Scholar
[Sin1] Sinai, Y. G., The notion of entropy of a dynamical system, Dokl. Akad. Nauk SSSR 125 (1959), 768771.Google Scholar
[Sin2] Sinai, Y. G., Markov partitions and C-diffeomorphisms, Funct. Anal. & Appl. 2 (1968), 6489.Google Scholar
[Sma] Smale, S., Differentiable dynamical systems, Bull. Amer. Math. Soc. 73 (1967), 747817.Google Scholar
[Sta] Stark, H., An Introduction to Number Theory, M.I.T. Press, Cambridge, Mass., 1978.Google Scholar
[SteT] Stewart, I. and Tall, D., Algebraic Number Theory, Chapman and Hall, London, 1979.Google Scholar
[SweC] Swenson, N. and Cioffi, J., A simplified design approach for run-length limited sliding block codes, preprint (based upon Ph.D. Dissertation by N. Swenson, Stanford Univ.) (1991).Google Scholar
[Thu] Thue, A., Uber unendliche Zeichreihen, Videnskbssolskabets Skrifter, I Mat.-nat. Kl., Christiana (1906).Google Scholar
[Toe] Toeplitz, Beispeile zur theorie der fastperiodischen Funktionen, Math. Ann. 98 (1928), 281–295.Google Scholar
[Tra] Trahtman, A. N., The road coloring problem, Israel J. Math. 172 (2009), 5160.Google Scholar
[Tro1] Trow, P., Resolving maps which commute with a power of the shift, Ergod. Th. & Dynam. Sys. 6 (1986), 281293.Google Scholar
[Tro2] Trow, P., Degrees of constant-to-one factor maps, Proc. Amer. Math. Soc. 103 (1988), 184188.Google Scholar
[Tro3] Trow, P., Degrees of finite-to-one factor maps, Israel J. Math. 71 (1990), 229– 238.Google Scholar
[Tro4] Trow, P., Divisibility constraints on degrees of factor maps, Proc. Amer. Math. Soc. 113 (1991), 755760.Google Scholar
[Tro5] Trow, P., Constant-to-one factor maps and dimension groups, in Symbolic Dynamics and Its Applications, Contemporary Mathematics 135 (ed. P. Walters), Providence, 1992, pp. 377–390.Google Scholar
[Tro6] Trow, P., Decompositions of finite-to-one factor maps, Israel J. Math. 91 (1995), 129155.Google Scholar
[TroW] Trow, P. and Williams, S., Core dimension group constraints for factors of sofic shifts, Ergod. Th. & Dynam. Sys. 13 (1993), 213224.Google Scholar
[Tun1] Tuncel, S., Conditional pressure and coding, Israel J. Math. 39 (1981), 101112.Google Scholar
[Tun2] Tuncel, S., A dimension, dimension modules and Markov chains, Proc. London Math. Soc. 46 (1983), 100116.Google Scholar
[Ver1] Vere-Jones, D., Geometric ergodicity in denumerable Markov chains, Quart. J. Math. Oxford (2) 13 (1962), 7–28.Google Scholar
[Ver2] Vere-Jones, D., Ergodic properties of nonnegative matrices – I, Pacific J. Math. 22 (1967), 361386.Google Scholar
[Wag1] Wagoner, J. B., Markov partitions and K2, Pub. Math. IHES 65 (1987), 91129.Google Scholar
[Wag2] Wagoner, J. B., Topological Markov chains, C-algebras and K2, Advances in Math. 71 (1988), 133185.Google Scholar
[Wag3] Wagoner, J. B., Eventual finite generation for the kernel the dimension group representation, Trans. Amer. Math. Soc. 317 (1990), 331350.Google Scholar
[Wag4] Wagoner, J. B., Higher-dimensional shift equivalence and strong shift equivalence are the same over the integers, Proc. Amer. Math. Soc. 109 (1990), 527536.Google Scholar
[Wag5] Wagoner, J. B., Triangle identities and symmetries of a subshift of finite type, Pacific J. Math. 44 (1990), 181205.Google Scholar
[Wag6] Wagoner, J. B., Classification of subshifts of finite type revisited, in Symbolic Dynamics and Its Applications, Contemporary Mathematics 135 (ed. P. Walters), Providence, 1992, pp. 423–444.Google Scholar
[Wal] Walters, P., An Introduction to Ergodic Theory, Springer Graduate Texts in Math 79, New York, 1982.Google Scholar
[WeaW] Weathers, A. D. and Wolf, J. K., A new rate 2/3 sliding block code for the (1, 7) runlength constraint with the minimal number of encoder states,, IEEE Trans. Inform. Theory 37 (1991), 908913.Google Scholar
[Weig] Weigandt, T., Magneto-optic recording using a (2, 18, 2) run-length-limited code, MS Thesis, MIT (1991).Google Scholar
[Wei] Weiss, B., Subshifts of finite type and sofic systems, Monats. Math. 77 (1973), 462474.Google Scholar
[Wil1] Willems, J. C., System theoretic models for the analysis of physical systems, Richerche di Automatica 10 (1979), 71106.Google Scholar
[Wil2] Willems, J. C., Models for dynamics, Dynamics Reported 2 (1989), 171269.Google Scholar
[WilR1] Williams, R. F., Classification of 1-dimensional attractors, Proc. Sym. Pure Math. A.M.S. 14 (1970), 341–361.Google Scholar
[WilR2] Williams, R. F., Classification of subshifts of finite type, Annals of Math. 98 (1973), 120–153; erratum, Annals of Math. 99 (1974), 380–381.Google Scholar
[WilR3] Williams, R. F., Shift equivalence of matrices in GL(2, Z), in Symbolic Dynamics and Its Applications, Contemporary Mathematics 135 (ed. P. Walters), Providence, 1992, pp. 445–451.Google Scholar
[WilS1] Williams, S., Toeplitz minimal flows which are not uniquely ergodic, Z. Wahrscheinlichkeitstheorie 67 (1984), 95107.Google Scholar
[WilS2] Williams, S., Covers of non-almost-finite-type systems, Proc. Amer. Math. Soc. 104 (1988), 245252.Google Scholar
[WilS3] Williams, S., A sofic system which is not spectrally of finite type, Ergod. Th. & Dynam. Sys. 8 (1988), 483490.Google Scholar
[WilS4] Williams, S., Notes on renewal systems, Proc. Amer. Math. Soc. 110 (1990), 851853.Google Scholar
[WilS5] Williams, S., Lattice invariants for sofic shifts, Ergod. Th. & Dynam. Sys. 11 (1991), 787801.Google Scholar
[Wil] Wilson, R., Introduction to Graph Theory (2nd ed.), Academic Press, New York, 1979.Google Scholar
[Yur] Yuri, M., Multidimensional maps with infinite invariant measures and countable state sofic shifts, Indagationes Mathematicae 6 (1995), 355-383.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Bibliography
  • Douglas Lind, University of Washington, Brian Marcus, University of British Columbia, Vancouver
  • Book: An Introduction to Symbolic Dynamics and Coding
  • Online publication: 19 December 2020
  • Chapter DOI: https://doi.org/10.1017/9781108899727.016
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Bibliography
  • Douglas Lind, University of Washington, Brian Marcus, University of British Columbia, Vancouver
  • Book: An Introduction to Symbolic Dynamics and Coding
  • Online publication: 19 December 2020
  • Chapter DOI: https://doi.org/10.1017/9781108899727.016
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Bibliography
  • Douglas Lind, University of Washington, Brian Marcus, University of British Columbia, Vancouver
  • Book: An Introduction to Symbolic Dynamics and Coding
  • Online publication: 19 December 2020
  • Chapter DOI: https://doi.org/10.1017/9781108899727.016
Available formats
×