4 - Some generalities
Published online by Cambridge University Press: 03 February 2011
Summary
In this chapter, we introduce several tools useful in the study of matrix ensembles beyond GUE, GOE and Wigner matrices. We begin by setting up in Section 4.1 a general framework for the derivation of joint distribution of eigenvalues in matrix ensembles and then we use it to derive joint distribution results for several classical ensembles, namely, the GOE/GUE/GSE, the Laguerre ensembles (corresponding to Gaussian Wishart matrices), the Jacobi ensembles (corresponding to random projectors) and the unitary ensembles (corresponding to random matrices uniformly distributed in classical compact Lie groups). In Section 4.2, we study a class of point processes that are determinantal; the eigenvalues of the GUE, as well as those for the unitary ensembles, fall within this class. We derive a representation for determinantal processes and deduce from it a CLT for the number of eigenvalues in an interval, as well as ergodic consequences. In Section 4.3, we analyze time-dependent random matrices, where the entries are replaced by Brownian motions. The introduction of Brownian motion allows us to use the powerful theory of Ito integration. Generalizations of the Wigner law, CLTs, and large deviations are discussed. We then present in Section 4.4 a discussion of concentration inequalities and their applications to random matrices, substantially extending Section 2.3. Concentration results for matrices with independent entries, as well as for matrices distributed according to Haar measure on compact groups, are discussed.
- Type
- Chapter
- Information
- An Introduction to Random Matrices , pp. 186 - 321Publisher: Cambridge University PressPrint publication year: 2009