Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-fbnjt Total loading time: 0 Render date: 2024-11-09T19:51:31.824Z Has data issue: false hasContentIssue false

29 - Computational Evolutionary Game Theory

from IV - Additional Topics

Published online by Cambridge University Press:  31 January 2011

Siddharth Suri
Affiliation:
Department of Computer Science Cornell University
Noam Nisan
Affiliation:
Hebrew University of Jerusalem
Tim Roughgarden
Affiliation:
Stanford University, California
Eva Tardos
Affiliation:
Cornell University, New York
Vijay V. Vazirani
Affiliation:
Georgia Institute of Technology
Get access

Summary

Abstract

This chapter examines the intersection of evolutionary game theory and theoretical computer science. We will show how techniques from each field can be used to answer fundamental questions in the other. In addition, we will analyze a model that arises by combining ideas from both fields. First, we describe the classical model of evolutionary game theory and analyze the computational complexity of its central equilibrium concept. Doing so involves applying techniques from complexity theory to the problem of finding a game-theoretic equilibrium. Second, we show how agents using imitative dynamics, often considered in evolutionary game-theory, converge to an equilibrium in a routing game. This is an instance of an evolutionary game-theoretic concept providing an algorithm for finding an equilibrium. Third, we generalize the classical model of evolutionary game theory to a graph-theoretic setting. Finally, this chapter concludes with directions for future research. Taken as a whole, this chapter describes how the fields of theoretical computer science and evolutionary game theory can inform each other.

Evolutionary Game Theory

Classical evolutionary game theory models organisms in a population interacting and competing for resources. The classical model assumes that the population is infinite. It models interaction by choosing two organisms uniformly at random, who then play a 2-player, symmetric game. The payoffs that these organisms earn represent an increase or a loss in fitness, which either helps or hinders the organisms ability to reproduce.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×