Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-fbnjt Total loading time: 0 Render date: 2024-11-10T02:53:29.408Z Has data issue: false hasContentIssue false

Bibliography

Published online by Cambridge University Press:  30 July 2009

I. G. Macdonald
Affiliation:
Queen Mary University of London
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[A1] G. E. Andrews, Problems and prospects for basic hypergeometric functions. In Theory and Applications of Special Functions, ed. R. Askey, Academic Press, New York (1975)
[A2] Askey, R. and Wilson, J., Some basic hypergeometric orthogonal polynomials that generalize Jacobi polynomials, Memoirs of the American Mathematical Society 319 (1985)Google Scholar
[B1] N. Bourbaki, Groupes et algèbres de Lie, Chapitres 4, 5 et 6, Hermann, Paris (1968)
[B2] Brieskorn, E. and Saito, K., Artin-gruppen und Coxeter-gruppen, Inv. Math.. 17 (1972) 245–271CrossRefGoogle Scholar
[B3] Bruhat, F. and Tits, J., Groupes réductifs sur un corps local: I. Données radicielles valuées, Publications Mathématiques de l'Institut des Hautes Études Scientifiques, no. 41 (1972)CrossRefGoogle Scholar
[C1] Cherednik, I., Double affine Hecke algebras, Knizhnik — Zamolodchikov equations, and Macdonald's operators, International Mathematics Research Notices 9 (1992). 171–179CrossRefGoogle Scholar
[C2] Cherednik, I., Double affine Hecke algebras and Macdonald's conjectures, Ann. Math.. 141 (1995) 191–216CrossRefGoogle Scholar
[C3] Cherednik, I., Non-symmetric Macdonald polynomials, International Mathematics Research Notices 10 (1995) 483–515CrossRefGoogle Scholar
[C4] Cherednik, I., Macdonald's evaluation conjectures and difference Fourier transform, Inv. Math.. 122 (1995) 119–145CrossRefGoogle Scholar
[C5] Cherednik, I., Intertwining operators of double affine Hecke algebras, Sel. Math. new series 3 (1997) 459–495CrossRefGoogle Scholar
[D1] Dyson, F. J., Statistical theory of the energy levels of complex systems I, J. Math. Phys.. 3 (1962) 140–156CrossRefGoogle Scholar
[G1] G. Gasper and M. Rahman, Basic Hypergeometric Series, Cambridge University Press (1990)
[G2] Gustafson, R. A., A generalization of Selberg's beta integral, Bulletin of the American Mathematical Society 22 (1990) 97–105CrossRefGoogle Scholar
[H1] Heckman, G. J. and Opdam, E. M., Root systems and hypergeometric functions I, Comp. Math.. 64 (1987) 329–352Google Scholar
[H2] Heckman, G. J., Root systems and hypergeometric functions II, Comp. Math. 64 (1987) 353–373Google Scholar
[I1] B. Ion, Involutions of double affine Hecke algebras, preprint (2001)
[K1] V. G. Kac, Infinite Dimensional Lie Algebras, Birkhäuser, Boston (1983)
[K2] Kirillov, A. A., Lectures on affine Hecke algebras and Macdonald's conjectures, Bulletin of the American Mathematical Society 34 (1997) 251–292CrossRefGoogle Scholar
[K3] Koornwinder, T., Askey-Wilson polynomials for root systems of type BC, Contemp. Math. 138 (1992) 189–204CrossRefGoogle Scholar
[L1] Lusztig, G., Affine Hecke algebras and their graded version, Journal of the American Mathematical Society 2 (1989) 599–635CrossRefGoogle Scholar
[M1] I. G. Macdonald, Spherical functions on a group of p-adic type, Publications of the Ramanujan Institute, Madras (1971)
[M2] Macdonald, I. G., Affine root systems and Dedekind's η-function, Inv. Math. 15 (1972) 91–143CrossRefGoogle Scholar
[M3] Macdonald, I. G., The Poincaré series of a Coxeter group, Math. Annalen 199 (1972) 161–174CrossRefGoogle Scholar
[M4] Macdonald, I. G., Some conjectures for root systems, SIAM Journal of Mathematical Analysis 13 (1982) 988–1007CrossRefGoogle Scholar
[M5] Macdonald, I. G., Orthogonal polynomials associated with root systems, preprint (1987); Séminaire Lotharingien de Combinatoire 45 (2000) 1–40Google Scholar
[M6] I. G. Macdonald, Symmetric Functions and Hall Polynomials, 2nd edition, Oxford University Press (1995)
[M7] Macdonald, I G., Affine Hecke algebras and orthogonal polynomials, Astérisque 237 (1996) 189–207Google Scholar
[M8] Macdonald, I. G., Symmetric functions and orthogonal polynomials, University Lecture Series vol. 12, American Mathematical Society (1998)Google Scholar
[M9] Moody, R. V., A new class of Lie algebras, J. Algebra 10 (1968) 211–230CrossRefGoogle Scholar
[M10] Moody, R. V., Euclidean Lie algebras, Can. J. Math.. 21 (1969) 1432–1454CrossRefGoogle Scholar
[M11] W. G. Morris, Constant Term Identities for Finite and Affine Root Systems: Conjectures and Theorems, Ph. D. thesis, Madison (1982)
[N1] Noumi, M., Macdonald — Koornwinder polynomials and affine Hecke rings, Sūriseisekikenkyūsho Kōkyūroku 919 (1995) 44–55 (in Japanese)Google Scholar
[O1] Opdam, E. M., Root systems and hypergeometric functions III, Comp. Math. 67 (1988) 21–49Google Scholar
[O2] Opdam, E. M., Root systems and hypergeometric functions IV, Comp. Math. 67 (1988) 191–209Google Scholar
[O3] Opdam, E. M., Some applications of hypergeometric shift operators, Inv. Math. 98 (1989) 1–18CrossRefGoogle Scholar
[O4] Opdam, E. M., Harmonic analysis for certain representations of graded Hecke algebras, Acta Math. 175 (1995) 75–121CrossRefGoogle Scholar
[R1] Rogers, L. J., On the expansion of some infinite products, Proc. London Math. Soc. 24 (1893) 337–352Google Scholar
[R2] Rogers, L. J., Second memoir on the expansion of certain infinite products, Proc. London Math. Soc. 25 (1894) 318–343Google Scholar
[R3] Rogers, L. J., Third memoir on the expansion of certain infinite products, Proc. London Math. Soc. 26 (1895) 15–32Google Scholar
[S1] Sahi, S., Nonsymmetric Koornwinder polynomials and duality, Arm. Math. 150 (1999) 267–282Google Scholar
[S2] Sahi, S., Some properties of Koornwinder polynomials, Contemp. Math. 254 (2000) 395–411CrossRefGoogle Scholar
[S3] Stanley, R., Some combinatorial properties of Jack symmetric functions, Adv. in Math. 77 (1989) 76–115CrossRefGoogle Scholar
[S4] J. V. Stokman, Koornwinder polynomials and affine Hecke algebras, preprint (2000)
[V1] H. van der Lek, The Homotopy Type of Complex Hyperplane Arrangements, Thesis, Nijmegen (1983)
[V2] Diejen, J., Self-dual Koornwinder-Macdonald polynomials, Inv. Math. 126 (1996) 319–339CrossRefGoogle Scholar
[A1] G. E. Andrews, Problems and prospects for basic hypergeometric functions. In Theory and Applications of Special Functions, ed. R. Askey, Academic Press, New York (1975)
[A2] Askey, R. and Wilson, J., Some basic hypergeometric orthogonal polynomials that generalize Jacobi polynomials, Memoirs of the American Mathematical Society 319 (1985)Google Scholar
[B1] N. Bourbaki, Groupes et algèbres de Lie, Chapitres 4, 5 et 6, Hermann, Paris (1968)
[B2] Brieskorn, E. and Saito, K., Artin-gruppen und Coxeter-gruppen, Inv. Math.. 17 (1972) 245–271CrossRefGoogle Scholar
[B3] Bruhat, F. and Tits, J., Groupes réductifs sur un corps local: I. Données radicielles valuées, Publications Mathématiques de l'Institut des Hautes Études Scientifiques, no. 41 (1972)CrossRefGoogle Scholar
[C1] Cherednik, I., Double affine Hecke algebras, Knizhnik — Zamolodchikov equations, and Macdonald's operators, International Mathematics Research Notices 9 (1992). 171–179CrossRefGoogle Scholar
[C2] Cherednik, I., Double affine Hecke algebras and Macdonald's conjectures, Ann. Math.. 141 (1995) 191–216CrossRefGoogle Scholar
[C3] Cherednik, I., Non-symmetric Macdonald polynomials, International Mathematics Research Notices 10 (1995) 483–515CrossRefGoogle Scholar
[C4] Cherednik, I., Macdonald's evaluation conjectures and difference Fourier transform, Inv. Math.. 122 (1995) 119–145CrossRefGoogle Scholar
[C5] Cherednik, I., Intertwining operators of double affine Hecke algebras, Sel. Math. new series 3 (1997) 459–495CrossRefGoogle Scholar
[D1] Dyson, F. J., Statistical theory of the energy levels of complex systems I, J. Math. Phys.. 3 (1962) 140–156CrossRefGoogle Scholar
[G1] G. Gasper and M. Rahman, Basic Hypergeometric Series, Cambridge University Press (1990)
[G2] Gustafson, R. A., A generalization of Selberg's beta integral, Bulletin of the American Mathematical Society 22 (1990) 97–105CrossRefGoogle Scholar
[H1] Heckman, G. J. and Opdam, E. M., Root systems and hypergeometric functions I, Comp. Math.. 64 (1987) 329–352Google Scholar
[H2] Heckman, G. J., Root systems and hypergeometric functions II, Comp. Math. 64 (1987) 353–373Google Scholar
[I1] B. Ion, Involutions of double affine Hecke algebras, preprint (2001)
[K1] V. G. Kac, Infinite Dimensional Lie Algebras, Birkhäuser, Boston (1983)
[K2] Kirillov, A. A., Lectures on affine Hecke algebras and Macdonald's conjectures, Bulletin of the American Mathematical Society 34 (1997) 251–292CrossRefGoogle Scholar
[K3] Koornwinder, T., Askey-Wilson polynomials for root systems of type BC, Contemp. Math. 138 (1992) 189–204CrossRefGoogle Scholar
[L1] Lusztig, G., Affine Hecke algebras and their graded version, Journal of the American Mathematical Society 2 (1989) 599–635CrossRefGoogle Scholar
[M1] I. G. Macdonald, Spherical functions on a group of p-adic type, Publications of the Ramanujan Institute, Madras (1971)
[M2] Macdonald, I. G., Affine root systems and Dedekind's η-function, Inv. Math. 15 (1972) 91–143CrossRefGoogle Scholar
[M3] Macdonald, I. G., The Poincaré series of a Coxeter group, Math. Annalen 199 (1972) 161–174CrossRefGoogle Scholar
[M4] Macdonald, I. G., Some conjectures for root systems, SIAM Journal of Mathematical Analysis 13 (1982) 988–1007CrossRefGoogle Scholar
[M5] Macdonald, I. G., Orthogonal polynomials associated with root systems, preprint (1987); Séminaire Lotharingien de Combinatoire 45 (2000) 1–40Google Scholar
[M6] I. G. Macdonald, Symmetric Functions and Hall Polynomials, 2nd edition, Oxford University Press (1995)
[M7] Macdonald, I G., Affine Hecke algebras and orthogonal polynomials, Astérisque 237 (1996) 189–207Google Scholar
[M8] Macdonald, I. G., Symmetric functions and orthogonal polynomials, University Lecture Series vol. 12, American Mathematical Society (1998)Google Scholar
[M9] Moody, R. V., A new class of Lie algebras, J. Algebra 10 (1968) 211–230CrossRefGoogle Scholar
[M10] Moody, R. V., Euclidean Lie algebras, Can. J. Math.. 21 (1969) 1432–1454CrossRefGoogle Scholar
[M11] W. G. Morris, Constant Term Identities for Finite and Affine Root Systems: Conjectures and Theorems, Ph. D. thesis, Madison (1982)
[N1] Noumi, M., Macdonald — Koornwinder polynomials and affine Hecke rings, Sūriseisekikenkyūsho Kōkyūroku 919 (1995) 44–55 (in Japanese)Google Scholar
[O1] Opdam, E. M., Root systems and hypergeometric functions III, Comp. Math. 67 (1988) 21–49Google Scholar
[O2] Opdam, E. M., Root systems and hypergeometric functions IV, Comp. Math. 67 (1988) 191–209Google Scholar
[O3] Opdam, E. M., Some applications of hypergeometric shift operators, Inv. Math. 98 (1989) 1–18CrossRefGoogle Scholar
[O4] Opdam, E. M., Harmonic analysis for certain representations of graded Hecke algebras, Acta Math. 175 (1995) 75–121CrossRefGoogle Scholar
[R1] Rogers, L. J., On the expansion of some infinite products, Proc. London Math. Soc. 24 (1893) 337–352Google Scholar
[R2] Rogers, L. J., Second memoir on the expansion of certain infinite products, Proc. London Math. Soc. 25 (1894) 318–343Google Scholar
[R3] Rogers, L. J., Third memoir on the expansion of certain infinite products, Proc. London Math. Soc. 26 (1895) 15–32Google Scholar
[S1] Sahi, S., Nonsymmetric Koornwinder polynomials and duality, Arm. Math. 150 (1999) 267–282Google Scholar
[S2] Sahi, S., Some properties of Koornwinder polynomials, Contemp. Math. 254 (2000) 395–411CrossRefGoogle Scholar
[S3] Stanley, R., Some combinatorial properties of Jack symmetric functions, Adv. in Math. 77 (1989) 76–115CrossRefGoogle Scholar
[S4] J. V. Stokman, Koornwinder polynomials and affine Hecke algebras, preprint (2000)
[V1] H. van der Lek, The Homotopy Type of Complex Hyperplane Arrangements, Thesis, Nijmegen (1983)
[V2] Diejen, J., Self-dual Koornwinder-Macdonald polynomials, Inv. Math. 126 (1996) 319–339CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Bibliography
  • I. G. Macdonald, Queen Mary University of London
  • Book: Affine Hecke Algebras and Orthogonal Polynomials
  • Online publication: 30 July 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511542824.008
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Bibliography
  • I. G. Macdonald, Queen Mary University of London
  • Book: Affine Hecke Algebras and Orthogonal Polynomials
  • Online publication: 30 July 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511542824.008
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Bibliography
  • I. G. Macdonald, Queen Mary University of London
  • Book: Affine Hecke Algebras and Orthogonal Polynomials
  • Online publication: 30 July 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511542824.008
Available formats
×