Skip to main content Accessibility help
×
Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-20T16:28:55.345Z Has data issue: false hasContentIssue false

3 - Low-Frequency Econometrics

Published online by Cambridge University Press:  27 October 2017

Ulrich K. Müller
Affiliation:
Princeton University
Mark W. Watson
Affiliation:
Princeton University
Bo Honoré
Affiliation:
Princeton University, New Jersey
Ariel Pakes
Affiliation:
Harvard University, Massachusetts
Monika Piazzesi
Affiliation:
Stanford University, California
Larry Samuelson
Affiliation:
Yale University, Connecticut
Get access

Summary

Many questions in economics involve long-run or “trend” variation and covariation in time series. Yet, time series of typical lengths contain only limited information about this long-run variation. This paper suggests that long-run sample information can be isolated using a small number of low-frequency trigonometric weighted averages, which in turn can be used to conduct inference about long-run variability and covariability. Because the low-frequency weighted averages have large sample normal distributions, large sample valid inference can often be conducted using familiar small sample normal inference procedures. Moreover, the general approach is applicable for a wide range of persistent stochastic processes that go beyond the familiar I (0) and I (1) models.

INTRODUCTION

This paper discusses inference about trends in economic time series. By “trend” we mean the low-frequency variability evident in a time series after forming moving averages such as low-pass (cf. Baxter and King, 1999) or Hodrick and Prescott (1997) filters. To measure this low-frequency variability we rely on projections of the series onto a small number of trigonometric functions (e.g., discrete Fourier, sine, or cosine transforms). The fact that a small number of projection coefficients capture low-frequency variability reflects the scarcity of low-frequency information in the data, leading to what is effectively a “small-sample” econometric problem. As we show, it is still relatively straightforward to conduct statistical inference using the small sample of low-frequency data summaries.Moreover, these low-frequency methods are appropriate for both weakly and highly persistent processes. Before getting into the details, it is useful to fix ideas by looking at some data.

Figure 1 plots the value of per-capita GDP growth rates (panel A) and price inflation (panel B) for the United States using quarterly data from 1947 through 2014, and where both are expressed in percentage points at an annual rate. The plots show the raw series and two “trends.” The first trend was constructed using a band-pass moving average filter designed to pass cyclical components with periods longer than T/6 ≈ 11 years, and the second is the full-sample projection of the series onto a constant and twelve cosine functions with periods 2T/j for j = 1, …, 12, also designed to capture variability for periods longer than 11 years.

Type
Chapter
Information
Advances in Economics and Econometrics
Eleventh World Congress
, pp. 53 - 94
Publisher: Cambridge University Press
Print publication year: 2017

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×