from Part II - State space methods for clinical data
Published online by Cambridge University Press: 05 October 2015
Introduction
Burst suppression – a discontinuous electroencephalographic (EEG) pattern in which flatline (suppression) and higher voltage (burst) periods alternate systematically but with variable burst and suppression durations (see Figure 14.1) – is a state of profound brain inactivation. Burst suppression is inducible by high doses of most anesthetics (Clark & Rosner 1973) or in profound hypothermia (e.g. used for cerebral protection in cardiac bypass surgeries) (Stecker et al. 2001); may occur pathologically in patients with coma after cardiac arrest or trauma as a manifestation of diffuse cortical hypoxicischemic injury (Young 2000), or in a form of early infantile encephalopathy (“Othahara syndrome”) (Ohtahara & Yamatogi 2006); and as a non-pathological finding in the EEGs of premature infants known as “trace alternant” or “trace discontinu.” The fact that these diverse etiologies produce similar brain activity have led to the current consensus view that (i) burst suppression reflects the operation of a low-order dynamic process which persists in the absence of higher-level brain activity, and (ii) there may be a common pathway to the state of brain inactivation.
Four cardinal phenomenological features of burst suppression have been established through a variety of EEG and neurophysiological studies (Akrawi et al. 1996; Amzica 2009; Ching et al. 2012). First, burst onsets are generally spatially synchronous (i.e., bursts begin and end nearly simultaneously across the entire scalp), except in cases of large-scale cortical deafferentation (Niedermeyer 2009), in which cases regional differences in blood supply and autoregulation may prevent the uniformity typically associated with burst suppression. A caveat here is related to recent evidence that suggests that, on a local circuit level, the onset of bursts may exhibit significant heterogeneity (Lewis et al. 2013). Second, the fraction of time spent in suppression– classically quantified using the burst suppression ratio (BSR) – increases monotonically with the level of brain inactivation. For example, the BSR increases with increasing doses of anesthetic or hypothermia, eventually reaching 100% as the EEG becomes isoelectric (flatline).
To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.