from Part I - State space methods for neural data
Published online by Cambridge University Press: 05 October 2015
Introduction
State space models for neural population spike trains Neural computations at all scales of evolutionary and behavioural complexity are carried out by recurrently connected networks of neurons that communicate with each other, with neurons elsewhere in the brain, and with muscles through the firing of action potentials or “spikes.” To understand how nervous tissue computes, it is therefore necessary to understand how the spiking of neurons is shaped both by inputs to the network and by the recurrent action of existing network activity. Whereas most historical spike data were collected one neuron at a time, new techniques including silicon multielectrode array recording and scanning 2-photon, light-sheet or light-field fluorescence calcium imaging increasingly make it possible to record spikes from dozens, hundreds and potentially thousands of individual neurons simultaneously. These new data offer unprecedented empirical access to network computation, promising breakthroughs both in our understanding of neural coding and computation (Stevenson & Kording 2011), and our ability to build prosthetic neural interfaces (Santhanam et al. 2006). Fulfillment of this promise will require powerful methods for data modeling and analysis, able to capture the structure of statistical dependence of network activity across neurons and time.
Probabilistic latent state space models (SSMs) are particularly well-suited to this task. Neural activity often appears stochastic, in that repeated trials under the same controlled experimental conditions can evoke quite different patterns of firing. Some part of this variation may reflect differences in the way the computation unfolds on each trial. Another part might reflect noisy creation and transmission of neural signals. Yet more may come from chaotic amplification of small perturbations. As computational signals are thought to be distributed across the population (in a “population code”), variation in the computation may be distinguished by its common impact on different neurons and the systematic evolution of these common effects in time.
An SSM is able to capture such structured variation through the evolution of its latent state trajectory. This latent state provides a summary description of all factors modulating neural activity that are not observed directly. These factors could include processes such as arousal, attention, cortical state (Harris & Thiele 2011) or behavioural states of the animal (Niell & Stryker 2010; Maimon 2011).
To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.