from Part I - State space methods for neural data
Published online by Cambridge University Press: 05 October 2015
Background: dynamics of neural decision making
A fundamental challenge in neuroscience is to understand how decisions are computed in neural circuits. One popular approach to this problem is to record from single neurons in brain regions that lie between primary sensory and motor regions while an animal performs a perceptual decision-making task. Typical tasks require the animal to integrate noisy sensory evidence over time in order to make a binary decision about the stimulus. Such experiments have the tacit goal of characterizing the dynamics governing the transformation of sensory information into a representation of the decision. However, recorded spike trains do not reveal these dynamics directly; they represent noisy, incomplete emissions that reflect the underlying dynamics only indirectly.
This dissociation between observed spike trains and the unobserved dynamics governing neural population activity has posed a key challenge for using neural measurements to gain insight into how the brain computes decisions. Recording decision-related neural activity has certainly shed much light upon what parts of the brain are involved in forms of decision making and what sorts of roles each area plays. But without direct access to the dynamics underlying single-trial decision formation, most analyses of decision-related neural data rely on estimating spike rates by averaging over trials (and sometimes, over neurons as well). Although the central tendency is of course a reasonable starting point in data analysis, sole reliance on the mean can obscure single-trial dynamics when substantial stochastic components are present. For example, as discussed in depth in this chapter, the average of a set of step functions – when the steps occur at different times on different trials – will yield an average that ramps continuously, masking the presence of discrete dynamics. Although the majority of averaging and regression-based analyses used in the field are straightforward to conceptualize and easy to apply to data, they provide limited insight into the dynamics that may govern how individual decisions are made. State space methods, on the other hand, are particularly well-suited for analyzing the neural representation of decisions (or other cognitive variables). The latent state can account for unobserved, trial varying dynamics, and the dynamics placed on the state can be directly linked to models of decision making.
To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.