Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-94fs2 Total loading time: 0 Render date: 2024-11-09T09:05:36.795Z Has data issue: false hasContentIssue false

9 - Lasers for high optical power interferometers

from Part 3 - Technology for advanced gravitational wave detectors

Published online by Cambridge University Press:  05 March 2012

B. Willke
Affiliation:
Leibniz Universität
M. Frede
Affiliation:
Laser Zentrum Hannover
D. G. Blair
Affiliation:
University of Western Australia, Perth
E. J. Howell
Affiliation:
University of Western Australia, Perth
L. Ju
Affiliation:
University of Western Australia, Perth
C. Zhao
Affiliation:
University of Western Australia, Perth
Get access

Summary

Many experiments in modern physics set highly demanding requirements on their laser light sources. Precision metrology, laser cooling experiments and the quantum engineering of atoms and molecules are some example areas in which very stable lasers are indispensable. The first generation of interferometric gravitational wave detectors have been among the laser applications with the most challenging requirements, simultaneously requiring low fluctuations in power, frequency and beam pointing as well as high power levels of 10W. Laser sources for second generation gravitational wave detectors need to fulfill even more demanding requirements, which we will discuss in the first section of this chapter. The second section is devoted to the design of lasers for advanced detectors followed by a section in which we discuss their stabilisation. The last section covers some laser concepts for third generation gravitational wave detectors.

Requirements on the light source of a gravitational wave detector

One of the fundamental noise sources of laser interferometric gravitational wave detectors directly related to the laser light is the shot noise in the interferometer readout. The ratio of a potential gravitational wave signal to the readout shot noise is proportional to the square root of the light power in the interferometer. Hence, gravitational wave detectors need high-power lasers in combination with resonant optical cavities to achieve high circulating power levels in the interferometer. First generation detectors use lasers with approximately 10Wlight power and second generation instruments will require power levels of order 200W. In general, increasing the light power in the interferometer improves the sensitivity until the noise introduced by fluctuating radiation pressure forces on their mirrors reaches the same level as the readout shot noise.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×