Skip to main content Accessibility help
×
Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2025-01-03T16:15:49.642Z Has data issue: false hasContentIssue false

4 - Numerical Methods

Published online by Cambridge University Press:  05 June 2016

Paul G. Tucker
Affiliation:
University of Cambridge
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2016

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

ABGRALL, R. 1994. On essentially non-oscillatory schemes on unstructured meshes: analysis and implementation. Journal of Computational Physics, 114(1), 45–58.Google Scholar
ACHARYA, S. & JANG, D. 1988. Source term decomposition to improve convergence of swirling flow calculations. AIAA Journal, 26(3), 372–374.Google Scholar
AGARWAL, A. & MORRIS, P. J. 2000. Direct simulation of acoustic scattering by a rotorcraft fuselage. In Proceedings of Sixth AIAA/CEAS Aeroacoustics Conference, Lahaina, Hawaii, 12–14 June, AIAA Paper No. AIAA-2000-2030.
ANG, W.-T. 2007. A beginner's course in boundary element methods, Universal-Publishers.
ARAKAWA, A. 1966. Computational design for long-term numerical integration of the equations of fluid motion: Two-dimensional incompressible flow, Part I. Journal of Computational Physics, 1(1), 119–143.Google Scholar
ARMSTRONG, D. B., NAJAFI-YAZDI, A., MONGEAU, L. & RAYMOND, V. 2013. Numerical simulations of flow over a landing gear with noise reduction devices using the lattice-boltzmann method. AIAA Paper No. AIAA-2013-2114.
ASCHER, U. M. & PETZOLD, L. R. 1998. Computer methods for ordinary differential equations and differential-algebraic equations, Vol. 61, Society of Industrial and Applied Mathematics (SIAM).
ASHCROFT, G. Z. 2001. A computational investigation of the noise radiated by flow induced cavity oscillations. AIAA 39th Aerospace Sciences Meeting, January 9–11, AIAA Paper No. AIAA- 2001-0512.
ASHCROFT, G. & ZHANG, X. 2001. A computational investigation of the noise radiated by flow-induced cavity oscillations. Proccedings 39th Aerospace Sciences Meeting and Exhibit, January, AIAA Paper 2001-0512.
ATKINS, H. L. & LOCKARD, D. P. 1999. A high-order method using unstructured grids for the aeroacoustic analysis of realistic aircraft configurations. In 5th AIAA/CEAS Aeroacoustics Conference and Exhibit, May, AIAA Paper No. AIAA-1999–1945.
BARTH, T. J. & JESPERSEN, D. 1989. The design and application of upwind schemes on unstructured meshes, 27th Aerospace Sciences Meeting, Reno, Nevada, January 9-12, AIAA Paper No. AIAA-1989-0366.
BARTON, I. 1998a. Comparison of SIMPLE‐ and PISO‐type algorithms for transient flows. International Journal for Numerical Methods in Fluids, 26, 459–483.Google Scholar
BARTON, I. 1998b. Improved laminar predictions using a stabilised time‐dependent simple scheme. International Journal for Numerical Methods in Fluids, 28, 841–857.Google Scholar
BEAM, R. M. & WARMING, R. F. 1976. An implicit finite-difference algorithm for hyperbolic systems in conservation-law form. Journal of Computational Physics, 22(1), 87–110.Google Scholar
BEAM, R. M. & WARMING, R. F. 1982. Implicit numerical methods for the compressible Navier-Stokes and Euler equations. In Von Karman Inst. for Fluid Dyn. Computational Fluid Dyn., 99 (SEE N83-19024 09-34), 1.Google Scholar
BELL, B. C. & SURANA, K. S. 1994. A space-time coupled p-version least-squares finite element formulation for unsteady fluid dynamics problems. International Journal for Numerical Methods in Engineering, 37(20), 3545–3569.Google Scholar
BHATNAGAR, P. L., GROSS, E. P. & KROOK, M. 1954. A model for collision processes in gases. I. Small amplitude processes in charged and neutral one-component systems. Physical Review, 94(3), 511.Google Scholar
BIRKEFELD, A. & MUNZ, C. 2012. Simulations of airfoil noise with the discontinuous Galerkin solver NoisSol. ERCOFTAC Bull, 90, 28–33.Google Scholar
BLAISDELL, G., SPYROPOULOS, E. & QIN, J. 1996. The effect of the formulation of nonlinear terms on aliasing errors in spectral methods. Applied Numerical Mathematics, 21(3), 207–219.Google Scholar
BLAZEK, J., KROLL, N., RADESPIEL, R. AND ROSSOW, C. C. 1991. Upwind implicit residual smoothing method for multistage schemes, AIAA Tenth Computational Fluid Dynamics Conference, AIAA Paper No. AIAA-91-1533.
BLAZEK, J. 2005. Computational Fluid Dynamics: Principles and Applications, Elsevier.
BOGEY, C. & BAILLY, C. 2004. A family of low dispersive and low dissipative explicit schemes for flow and noise computations. Journal of Computational Physics, 194(1), 194–214.Google Scholar
BOOK, D. L., BORIS, J. P. & HAIN, K. 1975. Flux-corrected transport II: Generalizations of the method. Journal of Computational Physics, 18(3), 248–283.Google Scholar
BORIS, J. P. & BOOK, D. L. 1973. Flux-corrected transport I: SHASTA, A fluid transport algorithm that works. Journal of Computational Physics, 11(1), 38–69.Google Scholar
BRANDT, A. 1977. Multi-level adaptive solutions to boundary-value problems. Mathematics of Computation, 31, 333–390.Google Scholar
BRANDT, A. 1980. Multilevel adaptive computations in fluid dynamics. AIAA Journal, 18(10), 1165–1172.Google Scholar
BRES, G. A., PÉROT, F. & FREED, D. 2009. Properties of the lattice-Boltzmann method for acoustics. Proc. AIAA Aeroacoustics Conference, Miami, Florida, AIAA Paper No. AIAA-2009-3395.
BRILEY, W. & MCDONALD, H. 1975. Solution of the three-dimensional compressible Navier-Stokes equations by an implicit technique. Proceedings of the Fourth International Conference on Numerical Methods in Fluid Dynamics, Lecture Notes in Physics, Springer-Verlag, Berlin, 35, 105–110.Google Scholar
BROECKHOVEN, J. R. & LACOR, C. 2007. Large-eddy simulation for acoustics. In WAGNER, C. A., HUTTL, T. & SAGAUT, P. (eds.), Cambridge University Press.
CAMACHO, R. & BARBOSA, J. 2005. The boundary element method applied to incompressible viscous fluid flow. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 27, 456–462.Google Scholar
CAMPOBASSO, M. S. & GILES, M. B. 2003. Effects of flow instabilities on the linear analysis of turbomachinery aeroelasticity. Journal of Propulsion and Power, 19(2), 250–259.Google Scholar
CAMPOBASSO, M. S. & GILES, M. B. 2004. Stabilization of a linear flow solver for turbomachinery aeroelasticity using recursive projection method. AIAA Journal, 42(9), 1765–1774.Google Scholar
CARTON, D. W., HILLEWAERT, K. & GEUZAINE, P. 2012. DNS of a low pressure turbine blade computed with the discontinuous Galerkin method. ASME Turbo Expo 2012: Turbine Technical Conference and Exposition, ASME Paper No. 2101-2111.
CHAPMAN, M. 1981. FRAM – Nonlinear damping algorithms for the continuity equation. Journal of Computational Physics, 44(1), 84–103.Google Scholar
CHEN, C.-J., NASERI-NESHAT, H. & HO, K.-S. 1981. Finite-analytic numerical solution of heat transfer in two-dimensional cavity flow. Numerical Heat Transfer, 4, 179–197.Google Scholar
CHESSHIRE, G. & HENSHAW, W. D. 1990. Composite overlapping meshes for the solution of partial differential equations. Journal of Computational Physics, 90(1), 1–64.Google Scholar
CHOI, H. & MOIN, P. 1994. Effects of the computational time step on numerical solutions of turbulent flow. Journal of Computational Physics, 113, 1–4.Google Scholar
CHOI, S. K. 1999. Note on the use of momentum interpolation method for unsteady flows. Numerical Heat Transfer, Part A: Applications, 36, 545–550.Google Scholar
CHOI, Y. & MERKLE, C. L. 1991. Time-derivative preconditioning for viscous flows. AIAA 22nd Fluid Dynamics Conference, Paper No. AIAA-91-1652.
CHORIN, A. J. 1967. A numerical method for solving incompressible viscous flow problems. Journal of Computational Physics, 2(1), 12–26.Google Scholar
CHOW, F. K. & MOIN, P. 2003. A further study of numerical errors in large-eddy simulations. Journal of Computational Physics, 184(2), 366–380.Google Scholar
CHUNG, Y. M. & TUCKER, P. G. 2003. Accuracy of higher-order finite difference schemes on nonuniform grids. AIAA Journal, 41(8), 1609–1611.Google Scholar
CIARDI, M., SAGAUT, P., KLEIN, M. & DAWES, W. 2005. A dynamic finite volume scheme for large-eddy simulation on unstructured grids. Journal of Computational Physics, 210(2), 632–655.Google Scholar
COLONIUS, T. & LELE, S. K. 2004. Computational aeroacoustics: progress on nonlinear problems of sound generation. Progress in Aerospace Sciences, 40(6), 345–416.Google Scholar
COUGHLIN, G. 2010. On hexahedral meshing for complex geometry. MPhil Thesis, University of Cambridge.
CROWLEY, W. 1967. Second-order numerical advection. Journal of Computational Physics, 1(4), 471–484.Google Scholar
DAUDE, F., BERLAND, J., EMMERT, T., LAFON, P., CROUZET, F. & BAILLY, C. 2012. A high-order finite-difference algorithm for direct computation of aerodynamic sound. Computers & Fluids, 61, 46–63.Google Scholar
DAVIES, C. & CARPENTER, P. W. 2001. A novel velocity-vorticity formulation of the Navier-Stokes equations with applications to boundary layer disturbance evolution. Journal of Computational Physics, 172(1), 119–165.Google Scholar
DAVIS, R. & MOORE, E. 1982. A numerical study of vortex shedding from rectangles. Journal of Fluid Mechanics, 116(3), 475–506.Google Scholar
DEARDORFF, J. W. 1970. A numerical study of three-dimensional turbulent channel flow at large Reynolds numbers. Journal of Fluid Mechanics, 41(2), 453–480.Google Scholar
DELANAYE, M. & ESSERS, J. 1997. Finite volume scheme with quadratic reconstruction on unstructured adaptive meshes applied to turbomachinery flows. Journal of Turbomachinery, 119(2), 263–269.Google Scholar
DEMIRDŽIĆ, I., LILEK, Ž. & PERIĆ, M. 1993. A collocated finite volume method for predicting flows at all speeds. International Journal for Numerical Methods in Fluids, 16, 1029–1050.Google Scholar
DEMIRDZIC, I. & PERIC, M. 1988. Space conservation law in finite volume calculations of fluid flow. International Journal for Numerical Methods in Fluids, 8(9), 1037–1050.Google Scholar
DENTON, J. D. 1992. The calculation of three-dimensional viscous flow through multistage turbomachines. Journal of Turbomachinery, 114(1), 18–26.Google Scholar
DOUGLAS, J. & GUNN, J. E. 1964. A general formulation of alternating direction methods. Numerische Mathematik, 6, 428–453.Google Scholar
DUCROS, F., FERRAND, V., NICOUD, F., WEBER, C., DARRACQ, D., GACHERIEU, C. & POINSOT, T. 1999. Large-eddy simulation of the shock/turbulence interaction. Journal of Computational Physics, 152(2), 517–549.Google Scholar
DUCROS, F., LAPORTE, F., SOULERES, T., GUINOT, V., MOINAT, P. & CARUELLE, B. 2000. High-order fluxes for conservative skew-symmetric-like schemes in structured meshes: application to compressible flows. Journal of Computational Physics, 161(1), 114–139.Google Scholar
DUKOWICZ, J. & RAMSHAW, J. 1979. Tensor viscosity method for convection in numerical fluid dynamics. Journal of Computational Physics, 32(1), 71–79.Google Scholar
ENGELMAN, M. & SANI, R. 1986. Finite element simulation of incompressible fluid flows with a free/moving surface. Recent Advances in Numerical Methods in Fluids, 5, 47–74.Google Scholar
FARES, E. & NOLTING, S. 2011. Unsteady flow simulation of a high-lift configuration using a lattice Boltzmann approach. Proceedings of the forty ninth AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition, AIAA Paper No. AIAA-2011-869.
FERZIGER, J. H. & PERIC, M. 2002. Computational methods for fluid dynamics, Vol. 3, Springer.
FLETCHER, C. A. 1988. Computational techniques for fluid dynamics. Vol. 1: Fundamental and general techniques, Springer.
FLETCHER, C. A. 1998. Computational Techniques for Fluid Dynamics, Vol. 1, Springer-Verlag.
FRINK, N. T. 1994. Recent progress toward a three-dimensional unstructured Navier-Stokes flow solver. Proceedings AIAA, 32nd Aerospace Sciences Meeting & Exhibit, Reno, Nevada. AIAA Paper No. AIAA-1994-0061
FRINK, N. T., PARIKH, P. & PIRZADEH, S. 1991. A fast upwind solver for the Euler equations on three-dimensional unstructured meshes. Proceedings 29th Aerospace Sciences Meeting. January AIAA paper No. 1991-0102.
FRITSCH, G. & GILES, M. 1992. Second-order effects of unsteadiness on the performance of turbomachines. 37th International Gas Turbine and Aeroengine Congress and Exposition, ASME Paper No. GT-32-389.
GAMET, L., DUCROS, F., NICOUD, F., POINSOT, T., et al. 1999. Compact finite difference schemes on non-uniform meshes: Application to direct numerical simulations of compressible flows. International Journal for Numerical Methods in Fluids, 29(2), 159–191.Google Scholar
GHOSAL, S. 1996. An analysis of numerical errors in large-eddy simulations of turbulence. Journal of Computational Physics, 125(1), 187–206.Google Scholar
GILES, M. 2004. The Hydra user's guide. Version 6, Rolls-Royce Plc.
GILES, M. B. 1990. Nonreflecting boundary conditions for Euler equation calculations. AIAA Journal, 28(12), 2050–2058.Google Scholar
GILES, M. B. 1988. Calculation of unsteady wake/rotor interaction, Journal of Propulsion and Power, 4(4), 356–362.Google Scholar
GILES, M. B. 1991. UNSFLO: A numerical method for the calculation of unsteady flow in turbomachinery, Gas Turbine Laboratory Report, Massachusetts Institute of Technology, Report No. 205.
GINGOLD, R. A. & MONAGHAN, J. J. 1977. Smoothed particle hydrodynamics: theory and application to non-spherical stars. Monthly Notices of the Royal Astronomical Society, 181, 375–389.Google Scholar
GLASS, J. & RODI, W. 1982. A higher order numerical scheme for scalar transport. Computer Methods in Applied Mechanics and Engineering, 31(3), 337–358.Google Scholar
GODUNOV, S. K. 1959. A difference method for numerical calculation of discontinuous solutions of the equations of hydrodynamics. Matematicheskii Sbornik, 89(3), 271–306.Google Scholar
GOSMAN, A., KOOSINLIN, M., LOCKWOOD, F. & SPALDING, D. 1976. Transfer of heat in rotating systems. Gas Turbine Conference and Products Show, ASME Paper No. 76-GT-25.
GRESHO, P., LEE, R. & SANI, R. 1980. On the time-dependent solution of the incompressible Navier-Stokes equations in two and three dimensions. In TAYLOR, C. & MORGAN, K. (eds.), Recent Advances in Numerical Methods in Fluids, 27–79, Pineridge Press, Ltd.
GRESHO, P. M., CHAN, S. T., LEE, R. L. & UPSON, C. D. 1984. A modified finite element method for solving the time-dependent, incompressible Navier-Stokes equations, Part 1: Theory. International Journal for Numerical Methods in Fluids, 4(6), 557–598.Google Scholar
GRINSTEIN, F. F., MARGOLIN, L. G. & RIDER, W. J. 2011. Implicit Large Eddy Simulation – Computing Turbulent Fluid Dynamics, Cambridge University Press.
HARLOW, F. H. & AMSDEN, A. A. 1971. A numerical fluid dynamics calculation method for all flow speeds. Journal of Computational Physics, 8, 197–213.Google Scholar
HARLOW, F. H. & WELCH, J. E. 1965. Numerical calculation of time-dependent viscous incompressible flow of fluid with free surface. Physics of Fluids, 8(12), 2182.Google Scholar
HARTEN, A. 1983. High resolution schemes for hyperbolic conservation laws. Journal of Computational Physics, 49(3), 357–393.Google Scholar
HARTEN, A., ENGQUIST, B., OSHER, S. & CHAKRAVARTHY, S. R. 1987. Uniformly high order accurate essentially non-oscillatory schemes, III. Journal of Computational Physics, 71(2), 231–303.Google Scholar
HASSAN, Y. A., RICE, J. G. & KIM, J. 1983. A stable mass-flow-weighted two-dimensional skew upwind scheme. Numerical Heat Transfer, 6, 395–408.Google Scholar
HE, L. & WANG, D. 2011. Concurrent blade aerodynamic-aero-elastic design optimization using adjoint method. Journal of Turbomachinery, 133(1), 011021.Google Scholar
HEDGES, L., TRAVIN, A. & SPALART, P. 2002. Detached-eddy simulations over a simplified landing gear. Journal of Fluids Engineering, 124(2), 413–423.Google Scholar
HENKES, R. A. 1990. Natural-convection boundary layers. Ph.D. dissertation, Technische University Delft.
HICKEN, J. E. & ZINGG, D. W. 2008. Parallel newton-krylov solver for the euler equations discretized using simultaneous approximation terms. AIAA Journal, 46(11), 2773–2786.Google Scholar
HIGNETT, B. P., WHITE, A., CARTER, R., JACKSON, W. & SMALL, R. 1985. A comparison of laboratory measurements and numerical simulations of baroclinic wave flows in a rotating cylindrical annulus. Quarterly Journal of the Royal Meteorological Society, 111(467), 131–154.Google Scholar
HIRSCH, C. 2007. Numerical Computation of Internal and External Flows: The Fundamentals of Computational Fluid Dynamics: The Fundamentals of Computational Fluid Dynamics, Vol. 1 and 2, Butterworth-Heinemann.
HIRT, C. 1968. Heuristic stability theory for finite-difference equations. Journal of Computational Physics, 2(4), 339–355.Google Scholar
HIRT, C., AMSDEN, A. A. & COOK, J. 1974. An arbitrary Lagrangian-Eulerian computing method for all flow speeds. Journal of Computational Physics, 14(3), 227–253.Google Scholar
HIXON, R. 2000. Prefactored small-stencil compact schemes. Journal of Computational Physics, 165(2), 522–541.Google Scholar
HOLMES, D. & CONNELL, S. 1986. Solution of the 2D Navier-Stokes equations on unstructured adaptive grids. Ninth Computational Fluid Dynamics Conference, AIAA Paper No. 89–1932.
HOLMES, D., CONNELL, S. & ENGINES, G. A. 1989. Solution of the 2D Navier-Stokes equations on unstructured adaptive grids. Proceedings of the 9th Computational Fluid Dynamics Conference. AIAA Paper No. 89-1932-CP.
HORIUTI, K. & ITAMI, T. 1998. Truncation error analysis of the rotational form for the convective terms in the Navier–Stokes equation. Journal of Computational Physics, 145(2), 671–692.Google Scholar
HU, F., HUSSAINI, M. Y. & MANTHEY, J. 1996. Low-dissipation and low-dispersion Runge–Kutta schemes for computational acoustics. Journal of Computational Physics, 124(1), 177–191.Google Scholar
HU, X., & NICOLAIDES, R. 1992. Covolume techniques for anisotropic media. Numerische Mathematik, 61(1), 215–234.Google Scholar
HUJEIRAT, A. & RANNACHER, R. 1998. A method for computing compressible, highly stratified flows in astrophysics based on operator splitting. International Journal for Numerical Methods in Fluids, 28(1), 1–22.Google Scholar
HU, X. & NICOLAIDES, R. 1992. Covolume techniques for anisotropic media. Numerische Mathematik, 61, 215–234.Google Scholar
ISERLES, A. 1986. Generalized leapfrog methods. IMA Journal of Numerical Analysis, 6(4), 381–392.Google Scholar
ISSA, R. I. 1986. Solution of the implicitly discretised fluid flow equations by operator-splitting. Journal of Computational Physics, 62(1), 40–65.Google Scholar
ISSA, R. & OLIVEIRA, P. 1994. Numerical prediction of phase separation in two-phase flow through T-junctions. Computers & Fluids, 23, 347–372.Google Scholar
JAMES, I., JONAS, P. & FARNELL, L. 1981. A combined laboratory and numerical study of fully developed steady baroclinic waves in a cylindrical annulus. Quarterly Journal of the Royal Meteorological Society, 107(451), 51–78.Google Scholar
JAMESON, A. 1991. Time dependent calculations using multigrid, with applications to unsteady flows past airfoils and wings. Proceedings of the tenth Computational Fluid Dynamics Conference, June, AIAA Paper No. AIAA-1991-1596.
JAMESON, A. 2008a. Formulation of kinetic energy preserving conservative schemes for gas dynamics and direct numerical simulation of one-dimensional viscous compressible flow in a shock tube using entropy and kinetic energy preserving schemes. Journal of Scientific Computing, 34(2), 188–208.Google Scholar
JAMESON, A. 2008b. The construction of discretely conservative finite volume schemes that also globally conserve energy or entropy. Journal of Scientific Computing, 34(2), 152–187.Google Scholar
JAMESON, A., SCHMIDT, W., TURKEL, E., et al. 1981. Numerical solutions of the Euler equations by finite volume methods using Runge-Kutta time-stepping schemes. Proceedings 14th Fluid and Plasma Dynamics Conference, June AIAA Paper No. AIAA-1981-1259.
JEFFERSON-LOVEDAY, R. 2008. Numerical simulations of unsteady impinging jet flows. Ph.D. dissertation, Swansea University.
JONES, W. & MARQUIS, A. 1985. Calculation of axisymmetric recirculating flows with a second order turbulence model. Proceedings of the 5th Symposium on Turbulent Shear Flows, Cornell University, 20.1–20.11.
JOO, J. & DURBIN, P. 2009. Simulation of turbine blade trailing edge cooling. Journal of Fluids Engineering, 131(2), 021102.Google Scholar
NAKAHASHI, K., & TOGASHI, F. 2000. Unstructured overset grid method for flow simulation of complex multiple body problems. Proceedings of ICAS 2000 Congress, Paper No. ICAS0263.
KARABASOV, S. A. & GOLOVIZNIN, V. M. 2007. New efficient high-resolution method for nonlinear problems in aeroacoustics. AIAA Journal, 45(12), 2861–2871.Google Scholar
KARABASOV, S. & GOLOVIZNIN, V. 2009. Compact accurately boundary-adjusting high-resolution technique for fluid dynamics. Journal of Computational Physics, 228(19), 7426–7451.Google Scholar
KHATIR, Z. 2000. Discrete vortex modelling of near-wall flow structure in turbulent boundary layers. Ph.D. dissertation, The University of Warwick.
KIM, J. & MOIN, P. 1985. Application of a fractional-step method to incompressible Navier-Stokes equations. Journal of Computational Physics, 59(2), 308–323.Google Scholar
KIM, J. W. & LEE, D. J. 1996. Optimized compact finite difference schemes with maximum resolution. AIAA Journal, 34(5), 887–893.Google Scholar
KIRCHHART, M. 2013. Vortex methods. Handout for the CES-Seminar Talk.
KRAKOS, J. A. & DARMOFAL, D. L. 2010. Effect of small-scale output unsteadiness on adjoint-based sensitivity. AIAA Journal, 48(11), 2611–2623.Google Scholar
LACOR, C. 1999. Industrial computational fluid dynamics. von Karman Institute for Fluid Dynamics. May 31–June 4 (Eds. BUCHLIN, J.-M. & Ph. Planquart), VKI LS 1999-06.
LAIZET, S. & LAMBALLAIS, E. 2009. High-order compact schemes for incompressible flows: A simple and efficient method with quasi-spectral accuracy. Journal of Computational Physics, 228(16), 5989–6015.Google Scholar
LEE, K. R., PARK, J. H. & KIM, K. H. 2011. High-order interpolation method for overset grid based on finite volume method. AIAA Journal, 49(7), 1387–1398.Google Scholar
LEITH, C. E. 1965. Numerical simulation of the earth's atmosphere. Meth. Comp. Phys, 4, 1–28.Google Scholar
LELE, S. K. 1992. Compact finite difference schemes with spectral-like resolution. Journal of Computational Physics, 103(1), 16–42.Google Scholar
LEONARD, B. P. 1979. A stable and accurate convective modelling procedure based on quadratic upstream interpolation. Computer Methods in Applied Mechanics and Engineering, 19(1), 59–98.Google Scholar
LERAT, A. 1979. Une classe de schémas aux différences implicites pour les systèmes hyperboliques de lois de conservation. Comptes Rendus Acad. Sciences Paris, 288, 1033–1036.Google Scholar
LIEN, F.-S. & LESCHZINER, M. 1994. Upstream monotonic interpolation for scalar transport with application to complex turbulent flows. International Journal for Numerical Methods in Fluids, 19(6), 527–548.Google Scholar
LIOU, M.-S. & STEFFEN JR, C. J. 1993. A new flux splitting scheme. Journal of Computational Physics, 107(1), 23–39.Google Scholar
LIU, X.-D., OSHER, S. & CHAN, T. 1994. Weighted essentially non-oscillatory schemes. Journal of Computational Physics, 115, 200–212.Google Scholar
LIU, Y. & NISHIMURA, N. 2006. The fast multipole boundary element method for potential problems: a tutorial. Engineering Analysis with Boundary Elements, 30, 371–381.Google Scholar
LOCKARD, D. P., BRENTNER, K. S. & ATKINS, H. 1995. High-accuracy algorithms for computational aeroacoustics. AIAA Journal, 33(2), 246–251.Google Scholar
LU, Y., YUAN, X. & DAWES, W. 2012. Investigation of 3D internal flow using new flux-reconstruction high order method. ASME Turbo Expo 2012: Turbine Technical Conference and Exposition, 2195–2216.
MAJUMDAR, S. 1988. Role of underrelaxation in momentum interpolation for calculation of flow with nonstaggered grids. Numerical Heat Transfer, 13, 125–132.Google Scholar
MANGANI, L., DARWISH, M. & MOUKALLED, F. 2013. Development of a Novel Pressure-Based Coupled CFD Solver for Turbulent Compressible Flows in Turbomachinery Applications. American Society of Mechanical Engineers 2013 Fluids Engineering Division Summer Meeting, Paper No. FEDSM2013-16082.
MANI, K. & MAVRIPLIS, D. J. 2010. Spatially non-uniform time-step adaptation for functional outputs in unsteady flow problems. 48th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition, AIAA Paper No. AIAA-2010-121.
MANOHA, E., TROFF, B. & SAGAUT, P. 2000. Trailing-edge noise prediction using large-eddy simulation and acoustic analogy. AIAA Journal, 38(4), 575–583.Google Scholar
MARIÉ, S., RICOT, D. & SAGAUT, P. 2009. Comparison between lattice Boltzmann method and Navier-Stokes high order schemes for computational aeroacoustics. Journal of Computational Physics, 228, 1056–1070.Google Scholar
MARONGIU, J., LEBOEUF, F. & PARKINSON, E. 2007. Numerical simulation of the flow in a Pelton turbine using the meshless method smoothed particle hydrodynamics: A new simple solid boundary treatment. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, 221(6), 849–856.Google Scholar
MARONGIU, J.-C., LEBOEUF, F., CARO, J. & PARKINSON, E. 2010. Free surface flows simulations in Pelton turbines using an hybrid SPH-ALE method. Journal of Hydraulic Research, 48(S1), 40–49.Google Scholar
MARY, I. & SAGAUT, P. 2002. Large eddy simulation of flow around an airfoil near stall. AIAA Journal, 40(6), 1139–1145.Google Scholar
MASON, P. J. & CALLEN, N. S. 1986. On the magnitude of the subgrid-scale eddy coefficient in large-eddy simulations of turbulent channel flow. Journal of Fluid Mechanics, 162, 439–462.Google Scholar
MOINIER, P. 1999. Algorithm developments for an unstructured viscous flow solver. Ph.D. dissertation, Oxford University.
MOSAHEBI, A. & NADARAJAH, S. K. 2011. An implicit adaptive non-linear frequency domain method (pNLFD) for viscous periodic steady state flows on deformable grids. Proceedings of the 49th Aerospace Sciences Meeting, January, Orlando, Florida, Paper No. AIAA-2011-775.
MOULINEC, C., BENHAMADOUCHE, S., LAURENCE, D. & PERIC, M. 2005. LES in a U-bend pipe meshed by polyhedral cells. Engineering Turbulence Modelling and Experiments, 6, 237–246.Google Scholar
MURAMATSU, T., & NINOKATA, H., 1992. Thermal striping temperature fluctuation analysis using the algebraic stress turbulence model in water and sodium, Japan Society of Mechanical Engineers International Journal, Series 2, 35(4), 486–496.Google Scholar
NASSER, A. & LESCHZINER, M. 1985. Computation of transient recirculating flow using spline approximations and time-space characteristics. Proceedings of the 4th International Conference on Numerical Methods in Laminar and Turbulent Flow, Swansea, 480–491.
NOWAK, A. & BREBBIA, C. 1989. The multiple-reciprocity method: A new approach for transforming BEM domain integrals to the boundary. Engineering Analysis with Boundary Elements, 6, 164–167.Google Scholar
ORKWIS, P. D., TURNER, M. G. & BARTER, J. W. 2002. Linear deterministic source terms for hot streak simulations. Journal of Propulsion and Power, 18(2), 383–389.Google Scholar
ORKWIS, P. D. & VANDEN, K. J.. On the accuracy of numerical versus analytical Jacobians. Proceedings 32nd AIAA, Aerospace Sciences Meeting & Exhibit, Reno, Nevada, AIAA Paper 94-0176.
ORSZAG, S. A. 1971. Accurate solution of the Orr–Sommerfeld stability equation. Journal of Fluid Mechanics, 50(04), 689–703.Google Scholar
OZYORUK, Y. & LONG, L. N. 1997. Multigrid acceleration of a high-resolution. AIAA Journal, 35(3), 428–433.Google Scholar
PARTRIDGE, P. W., BREBBIA, C. A. & WROBEL, L. C. 1992. The dual reciprocity boundary element method, Computational Mechanics Publications.
PATANKAR, S. 1980. Numerical heat transfer and fluid flow, CRC Press.
PATANKAR, S. & BALIGA, B. 1978. A new finite-difference scheme for parabolic differential equations. Numerical Heat Transfer, 1(1), 27–37.Google Scholar
PATANKAR, S. V. & SPALDING, D. B. 1972. A calculation procedure for heat, mass and momentum transfer in three-dimensional parabolic flows. International Journal of Heat and Mass Transfer, 15(10), 1787–1806.Google Scholar
PATERA, A. T. 1984. A spectral element method for fluid dynamics: laminar flow in a channel expansion. Journal of Computational Physics, 54(3), 468–488.Google Scholar
PAULEY, L. L., MOIN, P. & REYNOLDS, W. C. 1990. The structure of two-dimensional separation. Journal of Fluid Mechanics, 220, 397–411.Google Scholar
PEACEMAN, D. W. & RACHFORD, J. 1955. The numerical solution of parabolic and elliptic differential equations. Journal of the Society for Industrial & Applied Mathematics, 3, 28–41.Google Scholar
PINELLI, A., NAQAVI, I., PIOMELLI, U. & FAVIER, J. 2010. Immersed-boundary methods for general finite-difference and finite-volume Navier–Stokes solvers. Journal of Computational Physics, 229(24), 9073–9091.Google Scholar
PITSCH, H. 2006. Large-eddy simulation of turbulent combustion. Annual Review of Fluid Mechanics, 38, 453–482.Google Scholar
PREECE, A. 2008. An Investigation into Methods to aid the Simulation of Turbulent Separation Control. Ph.D. dissertation, The University of Warwick.
RAITHBY, G. & SCHNEIDER, G. 1979. Numerical solution of problems in incompressible fluid flow: treatment of the velocity-pressure coupling. Numerical Heat Transfer, Part A: Applications, 2, 417–440.Google Scholar
RAITHBY, G. & SCHNEIDER, G. 1980. Erratum. Numerical Heat Transfer, 3, 513.Google Scholar
RAW, M. 1996. Robustness of coupled algebraic multigrid for the Navier-Stokes equations. Proceedings 34th Aerospace Sciences Meeting and Exhibit, January, AIAA Paper No., AIAA-96-0297.
RAYNER, D. 1993. A Numerical Study into the Heat Transfer beneath the Stator Blade of an Axial Compressor. Ph.D. dissertation, University of Sussex.
REINDL, D. T., BECKHAM, W. A., MITCHELL, J. W. & RUTLAND, C. 1991. Benchmarking transient natural convection in an enclosure, ASME Paper No. 91-HT-8, pp. 1–7.
RHIE, C. & CHOW, W. 1983. Numerical study of the turbulent flow past an airfoil with trailing edge separation. AIAA Journal, 21, 1525–1532.Google Scholar
RIDER, W. & DRIKAKIS, D. 2005. High-resolution methods for incompressible and low-speed flows, Springer.
RIZZETTA, D. P., VISBAL, M. R. & MORGAN, P. E. 2008. A high-order compact finite-difference scheme for large-eddy simulation of active flow control. Progress in Aerospace Sciences, 44(6), 397–426.Google Scholar
ROACHE, P. J. 1992. A flux-based modified method of characteristics. International Journal for Numerical Methods in Fluids, 15(11), 1259–1275.Google Scholar
ROE, P. 1986. Characteristic-based schemes for the Euler equations. Annual Review of Fluid Mechanics, 18(1), 337–365.Google Scholar
ROE, P. L. 1981. Approximate Riemann solvers, parameter vectors, and difference schemes. Journal of Computational Physics, 43(2), 357–372.Google Scholar
ROGERS, S. E. & KWAK, D. 1990. Upwind differencing scheme for the time-accurate incompressible Navier-Stokes equations. AIAA Journal, 28(2), 253–262.Google Scholar
ROGERS, S. E., KWAK, D. & CHANG, J. L. 1986. Numerical solution of the incompressible Navier-Stokes equations in three-dimensional generalized curvilinear coordinates. NASA STI/Recon Technical Report N, 87, 11964.Google Scholar
RUGE, J. & STUEBEN, K. 1986. Algebraic multigrid. Arbeitspapiere der GMD, 210.Google Scholar
RUMPFKEIL, M. P., ZINGG, D. W. 2007. A general framework for the optimal control of unsteady flows with applications. Proceedings of the 45th AIAA Aerospace Meeting and Exhibit, 8–11 January, Reno, Nevada, Paper No. AIAA 2007–1128.
SANDHAM, N. & YEE, H. 2001. Entropy splitting for high order numerical simulation of compressible turbulence. In Computational Fluid Dynamics, 361–366, Springer.
SEGERLIND, L. 1984. Applied Finite Element Analysis, John Wiley and Sons.
SEIDL, V., PERIC, M. & SCHMIDT, M. 1995. Space- and time-parallel Navier-Stokes solver for 3d block-adaptive Cartesian grids. Parallel Computational Fluid Dynamics: Proceedings, 95, 557–584.Google Scholar
SHUR, M., SPALART, P., STRELETS, M. K. & TRAVIN, A. 2003. Towards the prediction of noise from jet engines. International Journal of Heat and Fluid Flow, 24(4), 551–561.Google Scholar
SKELBOE, S. 1977. The control of order and steplength for backward differentiation methods. BIT Numerical Mathematics, 17(1), 91–107.Google Scholar
SPALART, P., HEDGES, L., SHUR, M. & TRAVIN, A. 2003. Simulation of active flow control on a stalled airfoil. Flow, Turbulence and Combustion, 71(1–4), 361–373.Google Scholar
SPALDING, D. 1972. A novel finite difference formulation for differential expressions involving both first and second derivatives. International Journal for Numerical Methods in Engineering, 4, 551–561.Google Scholar
SPEZIALE, C. G. 1987. On the advantages of the vorticity-velocity formulation of the equations of fluid dynamics. Journal of Computational Physics, 73(2), 476–480.Google Scholar
SPYROPOULOS, E. T. & BLAISDELL, G. A. 1998. Large-eddy simulation of a spatially evolving supersonic turbulent boundary-layer flow. AIAA Journal, 36(11), 1983–1990.Google Scholar
STANIFORTH, A. & COTE, J. 1991. Semi-Lagrangian integration schemes for atmospheric models – a review. Monthly Weather Review, 119(9), 2206–2223.Google Scholar
STONE, H. L. 1968. Iterative solution of implicit approximations of multidimensional partial differential equations. Society for Industrial and Applied Mathematics Journal on Numerical Analysis, 5, 530–558.Google Scholar
SUCCI, S. 2001. The Lattice Boltzmann Equation for Fluid Dynamics and Beyond, Oxford University Press.
SWANSON, R. C. & TURKEL, E. 1992. On central-difference and upwind schemes. Journal of Computational Physics, 101(2), 292–306.Google Scholar
TAJALLIPOUR, N., BABAEE OWLAM, B. & PARASCHIVOIU, M. 2009. Self-adaptive upwinding for large eddy simulation of turbulent flows on unstructured elements. Journal of Aircraft, 46(3), 915–926.Google Scholar
TALHA, T. 2012. A numerical investigation of three-dimensional unsteady turbulent channel flow subjected to temporal acceleration. Ph.D. dissertation, University of Warwick.
TAM, C. K. & SHEN, H. 1993. Direct computation of nonlinear acoustic pulses using high order finite difference schemes. Proceedings 15th Aeroacoustics Conference. October AIAA Paper No., AIAA-93-4325.
TAM, C. K. & WEBB, J. C. 1993. Dispersion-relation-preserving finite difference schemes for computational acoustics. Journal of Computational Physics, 107(2), 262–281.Google Scholar
TAM, C. K., WEBB, J. C. & DONG, Z. 1993. A study of the short wave components in computational acoustics. Journal of Computational Acoustics, 1(1), 1–30.Google Scholar
TANG, L. & BAEDER, J. D. 1998. Uniformly accurate finite difference schemes for p-refinement. SIAM Journal on Scientific Computing, 20(3), 1115–1131.Google Scholar
THOMAS, P. & LOMBARD, C. 1979. Geometric conservation law and its application to flow computations on moving grids. AIAA Journal, 17(10), 1030–1037.Google Scholar
TU, C., DEVILLE, M., DHEUR, L. & VANDERSCHUREN, L. 1992. Finite element simulation of pulsatile flow through arterial stenosis. Journal of Biomechanics, 25(10), 1141–1152.Google Scholar
TUCKER, P. 1997. Numerical precision and dissipation errors in rotating flows. International Journal of Numerical Methods for Heat & Fluid Flow, 7(7), 647–658.Google Scholar
TUCKER, P. G. 2001. Computation of unsteady internal flows, Springer.
TUCKER, P. 2002a. Novel multigrid orientated solution adaptive time-step approaches. International Journal for Numerical Methods in Fluids, 40(3–4), 507–519.Google Scholar
TUCKER, P. G. 2002b. Temporal behavior of flow in rotating cavities. Numerical Heat Transfer: Part A: Applications, 41(6–7), 611–627.Google Scholar
TUCKER, P. G. 2004. Novel MILES computations for jet flows and noise. International Journal of Heat and Fluid Flow, 25(4), 625–635.Google Scholar
TUCKER, P. G. 2013. Unsteady computational fluid dynamics in aeronautics, Springer.
UZUN, A. & HUSSAINI, M. Y. 2009. Simulation of noise generation in the near-nozzle region of a chevron nozzle jet. AIAA Journal, 47(8), 1793–1810.Google Scholar
VAN ALBADA, G., VAN LEER, B. & ROBERTS JR, W. 1982. A comparative study of computational methods in cosmic gas dynamics. Astronomy and Astrophysics, 108, 76–84.Google Scholar
VAN DOORMAAL, J. & RAITHBY, G. 1984. Enhancements of the SIMPLE method for predicting incompressible fluid flows. Numerical Heat Transfer, 7, 147–157.Google Scholar
VAN LEER, B. 1974. Towards the ultimate conservative difference scheme, II: Monotonicity and conservation combined in a second-order scheme. Journal of Computational Physics, 14(4), 361–370.Google Scholar
VAN LEER, B. 1977. Towards the ultimate conservative difference scheme, III: Upstream-centered finite-difference schemes for ideal compressible flow. Journal of Computational Physics, 23(3), 263–275.Google Scholar
VAN LEER, B. 1979. Towards the ultimate conservative difference scheme. V. A second-order sequel to Godunov's method. Journal of Computational Physics, 32(1), 101–136.Google Scholar
VAUGHAN, C., GILHAM, S. & CHEW, J. 1989. Numerical solutions of rotating disc flows using a non-linear multigrid algorithm. Proceedings of the 6th International Conference on Numerical Methods in Laminar and Turbulent Flow, 63–67.
VERMEIRE, B. C., NADARAJAH, S. & TUCKER, P. G. 2014. Canonical test cases for high-order unstructured implicit large eddy simulation. Proceedings 52nd AIAA Aerospace Sciences Meeting, AIAA Paper No. AIAA-2014-0935.
VISBAL, M. R. & GAITONDE, D. V. 2002. On the use of higher-order finite-difference schemes on curvilinear and deforming meshes. Journal of Computational Physics, 181(1), 155–185.Google Scholar
WALLIS, S. G. & MANSON, J. R. 1997. Accurate numerical simulation of advection using large time steps. International Journal for Numerical Methods in Fluids, 24(2), 127–139.Google Scholar
WANG, Z. J., LIU, Y., MAY, G., & JAMESON, A., 2007. Spectral difference method for unstructured grids II: extension to the Euler equations. Journal of Scientific Computing, 32(1), 45–71.Google Scholar
WATERSON, N. P. & DECONINCK, H. 1995. A unified approach to the design and application of bounded higher-order convection schemes. Numerical Methods in Laminar and Turbulent Flow, 9, 203–214.Google Scholar
WATSON, R. 2014. Large eddy simulation of cutback trailing edges for film cooling turbine blades. Ph.D. dissertation, University of Cambridge.
WEISS, J. M. & SMITH, W. A. 1995. Preconditioning applied to variable and constant density flows. AIAA Journal, 33(11), 2050–2057.Google Scholar
WIETH, L., LIEBER, C., KURZ, W., BRAUN, S., KOCH, R., & BAUER, H. J. 2015. Numerical modeling of an aero-engine bearing chamber using the meshless smoothed particle hydrodynamics method. ASME Turbo Expo 2015, Turbine Technical Conference and Exposition, Montreal, Canada, ASME Paper No. Paper No. GT2015-42316.
WILLCOX, D. 1998. Turbulence modelling for CFD, DCW Industries Inc.
WOLF, W. & AZEVEDO, J. 2007. High-order ENO and WENO schemes for unstructured grids. International Journal for Numerical Methods in Fluids, 55(10), 917–943.Google Scholar
XIA, H. 2005. Dynamic Grid Detached-Eddy Simulation for Synthetic Jet Flows. Ph.D. dissertation, The University of Sheffield.
YANG, G., CAUSON, D., INGRAM, D., SAUNDERS, R. & BATTEN, P. 1997. A Cartesian cut cell method for compressible flows, Part B: moving body problems. Aeronautical Journal, 101(1002), 57–65.Google Scholar
YAO, Y., SAVILL, A., SANDHAM, N. & DAWES, W. 2000. Simulation of a turbulent trailing-edge flow using unsteady RANS and DNS. In NAGANO, Y., HANJALIC, K. & TSUJI, T. (eds.), Turbulence, Heat and Mass Transfer, 463–470, Aichi Shuppan.
YU, B., TAO, W.-Q., WEI, J.-J., KAWAGUCHI, Y., TAGAWA, T. & OZOE, H. 2002. Discussion on momentum interpolation method for collocated grids of incompressible flow. Numerical Heat Transfer, Part B: Fundamentals, 42, 141–166.Google Scholar
ZHU, Z. W., LACOR, C. & HIRSCH, C.. A new residual smoothing method for multigrid multi-stage schemes. Proceedings of the 11th AIAA CFD Conference, Paper No. AIAA-93-3356.
ZIENKIEWICZ, O. C. & TAYLOR, R. L. 2005. The finite element method for solid and structural mechanics, Butterworth-Heinemann.
ZIENKIEWICZ, O., TAYLOR, R. & NITHIARASU, P. 2005. The Finite Element Method for Fluid Dynamics, Sixth Edition, Elsevier.
ZOLTAK, J. & DRIKAKIS, D. 1998. Hybrid upwind methods for the simulation of unsteady shock-wave diffraction over a cylinder. Computer Methods in Applied Mechanics and Engineering, 162(1), 165–185.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Numerical Methods
  • Paul G. Tucker, University of Cambridge
  • Book: Advanced Computational Fluid and Aerodynamics
  • Online publication: 05 June 2016
  • Chapter DOI: https://doi.org/10.1017/CBO9781139872010.005
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Numerical Methods
  • Paul G. Tucker, University of Cambridge
  • Book: Advanced Computational Fluid and Aerodynamics
  • Online publication: 05 June 2016
  • Chapter DOI: https://doi.org/10.1017/CBO9781139872010.005
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Numerical Methods
  • Paul G. Tucker, University of Cambridge
  • Book: Advanced Computational Fluid and Aerodynamics
  • Online publication: 05 June 2016
  • Chapter DOI: https://doi.org/10.1017/CBO9781139872010.005
Available formats
×