Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-s2hrs Total loading time: 0 Render date: 2024-11-19T11:07:05.006Z Has data issue: false hasContentIssue false

17 - Integrating Species Interaction Networks and Biogeography

from Part III - Food Webs and Environmental Sustainability

Published online by Cambridge University Press:  05 December 2017

John C. Moore
Affiliation:
Colorado State University
Peter C. de Ruiter
Affiliation:
Wageningen Universiteit, The Netherlands
Kevin S. McCann
Affiliation:
University of Guelph, Ontario
Volkmar Wolters
Affiliation:
Justus-Liebig-Universität Giessen, Germany
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Adaptive Food Webs
Stability and Transitions of Real and Model Ecosystems
, pp. 289 - 304
Publisher: Cambridge University Press
Print publication year: 2017

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Albrecht, M., Riesen, M., and Schmid, B. (2010). Plant–pollinator network assembly along the chronosequence of a glacier foreland. Oikos, 119(10), 16101624.Google Scholar
Alexander, J. M., Diez, J. M., and Levine, J. M. (2015). Novel competitors shape species’ response to climate change. Nature, 525, 515518.CrossRefGoogle Scholar
Amarasekare, P. (2008). Spatial dynamics of foodwebs. Annual Review of Ecology and Systematics, 39, 479500.Google Scholar
Araújo, M. B., Nogués-Bravo, D., Diniz-Filho, J. A. F., et al. (2008). Quaternary climate changes explain diversity among reptiles and amphibians. Ecography, 31, 815.CrossRefGoogle Scholar
Bascompte, J. (2009). Mutualistic networks. Frontiers in Ecology and the Environment, 8, 429436.CrossRefGoogle Scholar
Bascompte, J., Jordano, P., Melián, C. J., and Olesen, J. M. (2003). The nested assembly of plant–animal mutualistic networks. Proceedings of the National Academy of Sciences of the United States of America, 100, 93839387.Google Scholar
Bell, G. (2007). The evolution of trophic structure. Heredity, 99(5), 494505.Google Scholar
Berlow, E. L., Neutel, A.-M., Cohen, J. E., et al. (2004). Interaction strengths in food webs: issues and opportunities. Journal of Animal Ecology, 73, 585598.CrossRefGoogle Scholar
Boulangeat, I., Gravel, D., and Thuiller, W. (2012). Accounting for dispersal and biotic interactions to disentangle the drivers of species distributions and their abundances. Ecology Letters, 15(6), 584593.Google Scholar
Briand, F. and Cohen, J. E. (1987). Environmental correlates of food chain length. Science, 238(4829), 956960.Google Scholar
Cohen, J. E., Pimm, S. L., Yodzis, P., and Saldaña, J. (1993). Body sizes of animal predators and animal prey in food webs. Journal of Animal Ecology, 62, 6778.Google Scholar
Cornell, H. V. and Harrison, S. P. (2013). Regional effects as important determinants of local diversity in both marine and terrestrial systems. Oikos, 122, 288297.CrossRefGoogle Scholar
Currie, D. J., Mittelbach, G. G., Cornell, H. V., et al. (2004). Predictions and tests of climate-based hypotheses of broad-scale variation in taxonomic richness. Ecology Letters, 7(12), 11211134.Google Scholar
Dalsgaard, B., Magård, E., Fjeldså, J., et al. (2011). Specialization in plant–hummingbird networks is associated with species richness, contemporary precipitation and quaternary climate-change velocity. PLoS ONE, 6(10), e25891.Google Scholar
Dalsgaard, B., Trøjelsgaard, K., Martín González, A. M., et al. (2013). Historical climate‐change influences modularity and nestedness of pollination networks. Ecography, 36(12), 13311340.Google Scholar
Darwin, C. R. (1862). On the Various Contrivances by Which British and Foreign Orchids Are Fertilised by Insects, and on the Good Effects of Intercrossing. London, UK: John Murray.Google Scholar
Dobzhansky, T. (1950). Evolution in the tropics. American Scientist, 38(2), 209221.Google Scholar
Dossena, M., Yvon-Durocher, G., Grey, J., et al. (2012). Warming alters community size structure and ecosystem functioning. Proceedings of the Royal Society B: Biological Sciences, 279, 30113019.Google Scholar
Dunne, J. A. (2006). The network structure of food webs. In Ecological Networks: Linking Structure to Dynamics in Food Webs, ed. Pascual, M. and Dunne, J. A., Oxford, UK: Oxford University Press, pp. 2786.Google Scholar
Dunne, J. A., Williams, R. J., and Martinez, N. D. (2002). Food-web structure and network theory: the role of connectance and size. Proceedings of the National Academy of Sciences of the United States of America, 99, 1291712922.Google Scholar
Gravel, D., Massol, F., Canard, E., Mouillot, D., and Mouquet, N. (2011). Trophic theory of island biogeography. Ecology Letters, 14(10), 10101016.Google Scholar
Guimaraes, P. R. Jr., Jordano, P., and Thompson, J. N. (2011). Evolution and coevolution in mutualistic networks. Ecology Letters, 14(9), 877885.Google Scholar
Hawkins, B. A. (2001). Ecology’s oldest pattern? Trends in Ecology and Evolution, 16, 470.CrossRefGoogle Scholar
Hawkins, B. A., Porter, E. E., and Diniz-Filho, J. A. F. (2003). Productivity and history as predictors of the latitudinal diversity gradient of terrestrial birds. Ecology, 84, 16081623.CrossRefGoogle Scholar
Hawkins, B. A., Diniz‐Filho, J. A. F., Jaramillo, C. A., and Soeller, S. A. (2007). Climate, niche conservatism, and the global bird diversity gradient. American Naturalist, 170(S2), S16S27.Google Scholar
Holt, A. R., Warren, P. H., and Gaston, K. J. (2002). The importance of biotic interactions in abundance–occupancy relationships. Journal of Animal Ecology, 71(5), 846854.Google Scholar
Holt, R. D. (1993). Ecology at the mesoscale: the influence of regional processes on local communities. In Species Diversity in Ecological Communities, ed. Ricklefs, R. and Schluter, D., Chicago, IL: University of Chicago Press, pp. 7788.Google Scholar
Holt, R. D. (1996). Food webs in space: an island biogeographic perspective. In Food Webs: Contemporary Perspectives, ed. Polis, G. A. and Winemiller, K., London: Chapman and Hall, pp. 313323.Google Scholar
Holt, R. D. (2010). Towards a trophic island biogeography: reflections on the interface of island biogeography and food web ecology. In The Theory of Island Biogeography Revisited, ed. Losos, J. B. and Ricklefs, R. E., Princeton, NJ: Princeton University Press, pp. 143185.Google Scholar
Holyoak, M., Leibold, M. A., and Holt, R. D. (2005). Metacommunities: Spatial Dynamics and Ecological Communities. Chicago, IL: University of Chicago Press.Google Scholar
Huston, M. A. (1999). Local processes and regional patterns: appropriate scales for understanding variation in the diversity of plants and animals. Oikos, 86, 393401.Google Scholar
Ings, T. C., Montoya, J. M., Bascompte, J., et al. (2009). Review: ecological networks – beyond food webs. Journal of Animal Ecology, 78(1), 253269.Google Scholar
Jansson, R. and Dynesius, M. (2002). The fate of clades in a world of recurrent climatic change: Milankovitch oscillations and evolution. Annual Review of Ecology and Systematics, 33, 741777.Google Scholar
Janzen, D. H. (1973). Sweep samples of tropical foliage insects: effects of seasons, vegetation types, elevation, time of day, and insularity. Ecology, 54, 687708.Google Scholar
Johnson, D. H. (1980). The comparison of usage and availability measurements for evaluating resource preference. Ecology, 61(1), 6571.Google Scholar
Joppa, L. N., Bascompte, J., Montoya, J. M., et al. (2009). Reciprocal specialization in ecological networks. Ecology Letters, 12, 961969.Google Scholar
Jordano, P., Bascompte, J., and Olesen, J. M. (2003). Invariant properties in coevolutionary networks of plant–animal interactions. Ecology Letters, 6, 6981.Google Scholar
Kissling, W. D., Field, R., Korntheuer, H., Heyder, U., and Böhning-Gaese, K. (2010). Woody plants and the prediction of climate-change impacts on bird diversity. Philosophical Transactions of the Royal Society B: Biological Sciences, 365(1549), 20352045.Google Scholar
Kissling, W. D., Dormann, C. F., Groeneveld, J., et al. (2012). Towards novel approaches to modelling biotic interactions in multispecies assemblages at large spatial extents. Journal of Biogeography, 39(12), 21632178.Google Scholar
Kitching, R. L. (2000). Food Webs and Container Habitats: the Natural History and Ecology of Phytotelmata. Cambridge, UK: Cambridge University Press.CrossRefGoogle Scholar
Krause, A. E., Frank, K. A., Mason, D. M., Ulanowicz, R. E., and Taylor, W. W. (2003). Compartments revealed in food web structure, Nature, 426, 482485.Google Scholar
Kreft, H. and Jetz, W. (2007). Global patterns and determinants of vascular plant diversity. Proceedings of the National Academy of Sciences of the United States of America, 104(14), 59255930.Google Scholar
Leibold, M. A., Holyoak, M., Mouquet, N., et al. (2004). The metacommunity concept: a framework for multi‐scale community ecology. Ecology Letters, 7(7), 601613.Google Scholar
Lurgi, M., Lopez, B. C., and Montoya, J. M. (2012a). Climate change impacts on body size and food web structure on mountain ecosystems. Philosophical Transactions of the Royal Society B: Biological Sciences, 367, 30503057.Google Scholar
Lurgi, M., Lopez, B. C., and Montoya, J. M. (2012b). Novel communities from climate change. Philosophical Transactions of the Royal Society B: Biological Sciences, 367, 29132922.Google Scholar
MacArthur, R. H. (1955). Fluctuations of animal populations, and a measure of community stability. Ecology, 36, 533536.Google Scholar
MacArthur, R. H. (1972). Geographical Ecology: Patterns in the Distribution of Species. New York, NY: Harper and Row.Google Scholar
MacArthur, R. H. and Pianka, E. R. (1966). On optimal use of a patchy environment. American Naturalist, 100, 603609.Google Scholar
MacArthur, R. H. and Wilson, E. O. (1967). The Theory of Island Biogeography. Princeton, NJ: Princeton University Press.Google Scholar
Martínez, N. D. (1991). Artifacts or attributes? Effects of resolution on the Little Rock Lake food web. Ecological Monographs, 64(4), 367392.Google Scholar
Massol, F., Gravel, D., Mouquet, N., et al. (2011). Linking community and ecosystem dynamics through spatial ecology. Ecology Letters, 14(3), 313323.Google Scholar
McCann, K. S., Rasmussen, J. B., and Umbanhowar, J. (2005). The dynamics of spatially coupled food webs. Ecology Letters, 8, 513523.Google Scholar
McKane, A. J. and Drossel, B. (2005). Modelling evolving food webs. In Dynamic Food Webs: Multispecies Assemblages, Ecosystem Development, and Environmental Change, ed. de Ruiter, P. C., Wolters, V., and Moore, J. C., Oxford, UK: Academic Press, pp. 7488.Google Scholar
Melián, C. J. and Bascompte, J. (2004). Food web cohesion. Ecology, 85, 352358.CrossRefGoogle Scholar
Melián, C. J., Vilas, C., Baldó, F., González-Ortegón, E., Drake, P., and Williams, R. J. (2011). Eco-evolutionary dynamics of individual-based food webs. Advances in Ecological Research, 45, 225268.Google Scholar
Montoya, J. M. and Raffaelli, D. (2010). Climate change, biotic interactions and ecosystem services. Philosophical Transactions of the Royal Society B: Biological Sciences, 365(1549), 20132018.Google Scholar
Montoya, J. M., Rodriguez, M. Á., and Hawkins, B. A. (2003). Food web complexity and higher-level ecosystem services. Ecology Letters, 6, 587593.Google Scholar
Montoya, J. M., Pimm, S. L., and Solé, R V. (2006). Ecological networks and their fragility. Nature, 442, 259264.CrossRefGoogle ScholarPubMed
Montoya, J. M., Woodward, G., Emmerson, M. C., and Solé, R. V. (2009). Press perturbations and indirect effects in real food webs. Ecology, 90, 24262433.Google Scholar
Morales-Castilla, I., Matias, M. G., Gravel, D., and Araújo, M. B. (2015). Inferring biotic interactions from proxies. Trends in Ecology and Evolution, 30, 347356.Google Scholar
Morris, R. J., Gripenberg, S., Lewis, O. T., and Roslin, T. (2014). Antagonistic interaction networks are structured independently of latitude and host guild. Ecology Letters, 17(3), 340349.CrossRefGoogle ScholarPubMed
Moya-Laraño, J., Verdeny-Vilalta, O., Rowntree, J., et al. (2012). Chapter 1: Climate change and eco-evolutionary dynamics in food webs. Advances in Ecological Research, 47, 180.Google Scholar
Ollerton, J. and Cranmer, L. (2002). Latitudinal trends in plant‐pollinator interactions: are tropical plants more specialised? Oikos, 98(2), 340350.Google Scholar
Paine, R. T., Tegner, M. J., and Johnson, E. A. (1998). Compounded perturbations yield ecological surprises. Ecosystems, 1, 535545.Google Scholar
Pearson, R. G. and Dawson, T. P. (2003). Predicting the impacts of climate change on the distribution of species: are bioclimate envelope models useful? Global Ecology and Biogeography, 12(5), 361371.Google Scholar
Polis, G. A. (1991). Complex trophic interactions in deserts: an empirical critique of food web theory. American Naturalist, 138, 123155.Google Scholar
Post, D. M. (2002). The long and short of food-chain length. Trends in Ecology and Evolution, 17(6), 269277.Google Scholar
Post, D. M., Pace, M. L., and Hairston, N. G. Jr (2000). Ecosystem size determines food-chain length in lakes. Nature, 405, 10471049.CrossRefGoogle ScholarPubMed
Rall, B. C., Vucic-Pestic, O., Ehnes, R. B., Emmerson, M., and Brose, U. (2010). Temperature, predator–prey interaction strength and population stability. Global Change Biology, 16(8), 21452157.Google Scholar
Reiss, J., Bridle, J. R., Montoya, J. M., and Woodward, G. (2009). Emerging horizons in biodiversity and ecosystem functioning research. Trends in Ecology and Evolution, 24(9), 505514.Google Scholar
Ricklefs, R. E. (1987). Community diversity: relative roles of local and regional processes. Science, 235, 167171.CrossRefGoogle ScholarPubMed
Romdal, T. S., Araújo, M. B., and Rahbek, C. (2013). Life on a tropical planet: niche conservatism and the global diversity gradient. Global Ecology and Biogeography, 22(3), 344350.Google Scholar
Rooney, N., McCann, K. S., Gellner, G., and Moore, J. (2006). Structural asymmetry and the stability of diverse food webs. Nature, 442, 265269.Google Scholar
Rooney, N., McCann, K. S., and Moore, J. C. (2008). A landscape theory for food web architecture. Ecology Letters, 11(8), 867881.Google Scholar
Sagarin, R. D., Gaines, S. D., and Gaylord, B. (2006). Moving beyond assumptions to understand abundance distributions across the ranges of species. Trends in Ecology and Evolution, 21(9), 524530.Google Scholar
Schemske, D. W. (2002). Ecological and evolutionary perspectives on the origins of tropical diversity. In Foundations of Tropical Forest Biology, ed. Chazdon, R. L. and Whitmore, T. C., Chicago, IL: University of Chicago Press, pp. 163173.Google Scholar
Schemske, D. W., Mittelbach, G. G., Cornell, H. V., Sobel, J. M., and Roy, K. (2009). Is there a latitudinal gradient in the importance of biotic interactions? Annual Review of Ecology and Systematics, 40, 245269.Google Scholar
Schleuning, M., Fründ, J., Klein, A.-M., et al. (2012). Specialization of mutualistic interaction networks decreases toward tropical latitudes. Current Biology, 22, 19251931.Google Scholar
Shurin, J. B., Clasen, J. L., Greig, H. S., Kratina, P., and Thompson, P. L. (2012). Warming shifts top–down and bottom–up control of pond food web structure and function. Philosophical Transactions of the Royal Society B: Biological Sciences, 367, 30083017.Google Scholar
Solé, R. V. and Montoya, J. M. (2001). Complexity and fragility in ecological networks. Proceedings of the Royal Society B: Biological Sciences, 268, 20392045.Google Scholar
Stevens, G. C. (1989). The latitudinal gradients in geographical range: how so many species co-exist in the tropics. American Naturalist, 133, 240256.Google Scholar
Thompson, R. M., Brose, U., Dunne, J. A., et al. (2012). Food webs: reconciling the structure and function of biodiversity. Trends in Ecology and Evolution, 27(12), 689697.Google Scholar
Thuiller, W., Brotons, L., Araújo, M. B., and Lavorel, S. (2004). Effects of restricting environmental range of data to project current and future species distributions. Ecography, 27(2), 165172.Google Scholar
Trøjelsgaard, K. and Olesen, J. M. (2013). Macroecology of pollination networks. Global Ecology and Biogeography, 22(2), 149162.Google Scholar
Tylianakis, J. M., Tscharntke, T., and Lewis, O. T. (2007). Habitat modification alters the structure of tropical host–parasitoid food webs. Nature, 445(7124), 202205.Google Scholar
Tylianakis, J. M., Didham, R. K., Bascompte, J., and Wardle, D. A. (2008). Global change and species interactions in terrestrial ecosystems. Ecology Letters, 11(12), 13511363.Google Scholar
Vasseur, D. A. and McCann, K. S. (2005). A mechanistic approach for modeling temperature‐dependent consumer–resource dynamics. American Naturalist, 166(2), 184198.Google Scholar
Vázquez, D. P. and Stevens, R. D. (2004). The latitudinal gradient in niche breadth: concepts and evidence. American Naturalist, 164(1), E119.Google Scholar
Warren, P. H. (1990). Variation in food-web structure: the determinants of connectance. American Naturalist, 136(5), 689700.CrossRefGoogle Scholar
Wisz, M. S., Pottier, J., Kissling, W. D., et al. (2013). The role of biotic interactions in shaping distributions and realised assemblages of species: implications for species distribution modelling. Biological Reviews, 88(1), 1530.Google Scholar
Wootton, J. T. and Emmerson, M. (2005). Measurement of interaction strength in nature. Annual Review of Ecology, Evolution, and Systematics, 5, 419444.Google Scholar
Yvon-Durocher, G., Jones, J., Trimmer, M., Woodward, G., and Montoya, J. M. (2010). Warming alters the metabolic balance of ecosystems. Philosophical Transactions of the Royal Society B: Biological Sciences, 365(1549), 21172126.Google Scholar
Yvon-Durocher, G., Montoya, J. M., Woodward, G., Jones, J., and Trimmer, M. (2011). Warming increases the proportion of primary production emitted as methane from freshwater mesocosms. Global Change Biology, 17(2), 12251234.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×