Skip to main content Accessibility help
×
Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2025-01-03T17:07:03.458Z Has data issue: false hasContentIssue false

Entropy stability theory for difference approximations of nonlinear conservation laws and related time-dependent problems

Published online by Cambridge University Press:  07 September 2010

Eitan Tadmor
Affiliation:
Department of Mathematics, Center for Scientific Computation and Mathematical Modeling (CSCAMM) and Institute for Physical Science & Technology (IPST), University of Maryland, College Park, MD 20742, USA
Arieh Iserles
Affiliation:
University of Cambridge
Get access

Summary

We study the entropy stability of difference approximations to nonlinear hyperbolic conservation laws, and related time-dependent problems governed by additional dissipative and dispersive forcing terms. We employ a comparison principle as the main tool for entropy stability analysis, comparing the entropy production of a given scheme against properly chosen entropyconservative schemes.

To this end, we introduce general families of entropy-conservative schemes, interesting in their own right. The present treatment of such schemes extends our earlier recipe for construction of entropy-conservative schemes, introduced in Tadmor (1987b). The new families of entropy-conservative schemes offer two main advantages, namely, (i) their numerical fluxes admit an explicit, closed-form expression, and (ii) by a proper choice of their path of integration in phase space, we can distinguish between different families of waves within the same computational cell; in particular, entropy stability can be enforced on rarefactions while keeping the sharp resolution of shock discontinuities.

A comparison with the numerical viscosities associated with entropy-conservative schemes provides a useful framework for the construction and analysis of entropy-stable schemes. We employ this framework for a detailed study of entropy stability for a host of first- and second-order accurate schemes. The comparison approach yields a precise characterization of the entropy stability of semi-discrete schemes for both scalar problems and systems of equations. We extend these results to fully discrete schemes. Here, spatial entropy dissipation is balanced by the entropy production due to time discretization with a sufficiently small time-step, satisfying a suitable CFL condition.

Type
Chapter
Information
Acta Numerica 2003 , pp. 451 - 512
Publisher: Cambridge University Press
Print publication year: 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×