6 - Resonant and unstable systems
Published online by Cambridge University Press: 22 March 2010
Summary
Jets and shear layers are frequently responsible for the generation of intense acoustic tones. Instability of the mean flow over of a wall cavity excites “self-sustained” resonant cavity modes or periodic “hydrodynamic” oscillations, which are maintained by the steady extraction of energy from the flow. Whistles and musical instruments such as the flute and organ pipe are driven by unstable air jets, and shear layer instabilities are responsible for tonal resonances excited in wind tunnels, branched ducting systems, and in exposed openings on ships and aircraft and other high-speed vehicles. These mechanisms are examined in this chapter, starting with very high Reynolds number flows, where a shear layer can be approximated by a vortex sheet. We shall also discuss resonances where thermal processes play a fundamental role, such as in the Rijke tube and pulsed combustor. The problems to be investigated are generally too complicated to be treated analytically with full generality, but much insight can be gained from exact treatments of linearized models and by approximate nonlinear analyses based on simplified, yet plausible representations of the flow.
Linear Theory of Wall Aperture and Cavity Resonances
Stability of Flow Over a Circular Wall Aperture
The sound produced by nominally steady, high Reynolds number flow over an opening in a thin wall is the simplest possible system to treat analytically. Our approach is applicable to all linearly excited systems involving an unstable shear layer, and it is an extension of the method used in Section 5.3.6 to determine the conductivity of a circular aperture in a mean grazing flow.
- Type
- Chapter
- Information
- Acoustics of Fluid-Structure Interactions , pp. 431 - 532Publisher: Cambridge University PressPrint publication year: 1998
- 2
- Cited by