Skip to main content Accessibility help
×
Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2025-01-03T18:45:54.272Z Has data issue: false hasContentIssue false

4 - Multiwavelength observations of accretion in low-mass X-ray binary systems

Published online by Cambridge University Press:  05 January 2014

Robert I. Hynes
Affiliation:
Louisiana State University
Ignacio González Martínez-País
Affiliation:
Instituto de Astrofísica de Canarias, Tenerife
Tariq Shahbaz
Affiliation:
Instituto de Astrofísica de Canarias, Tenerife
Jorge Casares Velázquez
Affiliation:
Instituto de Astrofísica de Canarias, Tenerife
Get access

Summary

Abstract

This work is intended to provide an introduction to multiwavelength observations of low-mass X-ray binaries and the techniques used to analyze and interpret their data. The focus primarily is on ultraviolet, optical, and infrared observations and their connections to other wavelengths. The topics covered include outbursts of soft X-ray transients, accretion disk spectral energy distributions, orbital light curves in luminous and quiescent states, superorbital and suborbital variability, line spectra, system parameter determinations, and echo mapping and other rapid correlated variability.

4.1 Introduction

The first X-ray binary to be observed and identified as such was Scorpius X-1 (Giacconi et al., 1962), although several other systems were known as optical stars or novae before this. Within a few years, optical and radio counterparts to Sco X-1 were discovered (Sandage et al., 1966; Andrew and Purton, 1968), and the topic has remained multiwavelength in nature since then.

This work is intended to provide an introduction to some of the observational characteristics of X-ray binaries suitable for a graduate student or an advanced undergraduate. My aim was to produce a primer for someone relatively new to the field rather than a comprehensive review. Where appropriate, I also discuss techniques for analysis and interpretation of the data. The focus is almost exclusively on low-mass X-ray binaries, in which the accretion disk is most accessible to multiwavelength observations, and is predominantly biased toward ultraviolet, optical, and infrared observations and their relation to observations at other wavelengths. For a textbook treatment of accretion astrophysics in general, the reader is referred to Frank et al. (2002) and for more comprehensive reviews of X-ray binaries to Lewin et al. (1995) and Lewin and van der Klis (2006).

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2014

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Andrew, B. H., and Purton, C. R. 1968. Detection of radio emission from Scorpio X-1. Nature, 218, 855–856.Google Scholar
Augusteijn, T., Kuulkers, E., and Shaham, J. 1993. “Glitches” in soft X-ray transients: Echoes of the main burst?A&A, 279, L13–L16.Google Scholar
Bayless, A. J., Robinson, E. L., Hynes, R. I., Ashcraft, T. A., and Cornell, M. E. 2010. The structure of the accretion disk in the accretion disk corona X-ray binary 4U 1822-371 at optical and ultraviolet wavelengths. ApJ, 709, 251–262.Google Scholar
Blandford, R. D., and Königl, A. 1979. Relativistic jets as compact radio sources. ApJ, 232, 34-48.Google Scholar
Bradley, C. K., Hynes, R. I., Kong, A. K. H., Haswell, C. A., Casares, J., and Gallo, E. 2007. The spectrum of the black hole X-Ray Nova V404 Cygni in quiescence as measured by XMM-Newton. ApJ, 667, 427–432.Google Scholar
Brocksopp, C., Bandyopadhyay, R. M., and Fender, R. P. 2004. “Soft X-ray transient” outbursts which are not soft. New Astronomy, 9, 249–264.Google Scholar
Brown, E. F., and Cumming, A. 2009. Mapping crustal Heating with the cooling light curves of quasi-persistent transients. ApJ, 698, 1020–1032.Google Scholar
Calvelo, D. E., Vrtilek, S. D., Steeghs, D., Torres, M. A. P., Neilsen, J., Filippenko, A. V., and Gonzalez Hernandez, J. I. 2009. Doppler and modulation tomography of XTEJ 1118+480 in quiescence. MNRAS, 399, 539–549.Google Scholar
Cannizzo, J. K., Chen, W., and Livio, M. 1995. The accretion disk limit cycle instability in black hole x-ray binaries. ApJ, 454, 880–894.Google Scholar
Cantrell, A. G., Bailyn, C. D., McClintock, J. E., and Orosz, J. A. 2008. Optical State Changes in the X-Ray-quiescent Black Hole A0620-00. ApJL, 673, L159–L162.Google Scholar
Casares, J. 2007. Observational evidence for stellar-mass black holes. Pages 3–12 of: V., Karas and G., Matt (eds.), IAU Symposium. IAU Symposium, vol. 238.
Casares, J., and Charles, P. A. 1994. Optical studies of V404 Cyg, the X-ray transient GS 2023+338. IV. The rotation speed of the companion star. MNRAS, 271, L5–L9.Google Scholar
Casares, J., Charles, P. A., and Kuulkers, E. 1998. The mass of the neutron star in Cygnus X-2 (V1341 Cygni). ApJL, 493, L39–L42.Google Scholar
Casares, J., Charles, P. A., and Naylor, T. 1992. A 6.5-day periodicity in the recurrent nova V404 Cygni implying the presence of a black hole. Nature, 355, 614–617.Google Scholar
Casares, J., Steeghs, D., Hynes, R. I., Charles, P. A., and O'Brien, K. 2003. Bowen fluorescence from the companion star in X1822-371. ApJ, 590, 1041–1048.Google Scholar
Chakrabarty, D., Homer, L., Charles, P. A., and O'Donoghue, D. 2001. Millihertz optical/ultraviolet oscillations in 4U 1626-67: evidence for a warped accretion disk. ApJ, 562, 985–991.Google Scholar
Chen, W., Livio, M., and Gehrels, N. 1993. The secondary maxima in black hole X-ray nova light curves – clues toward a complete picture. ApJL, 408, L5–L8.Google Scholar
Chen, W., Shrader, C. R., and Livio, M. 1997. The properties of X-ray and optical light curves of X-ray novae. ApJ, 491, 312–338.Google Scholar
Cheng, F. H., Horne, K., Panagia, N., Shrader, C. R., Gilmozzi, R., Paresce, F., and Lund, N. 1992. The Hubble Space Telescope observations of X-ray Nova Muscae 1991 and its spectral evolution. ApJ, 397, 664–673.Google Scholar
Clarkson, W. I., Charles, P. A., Coe, M. J., and Laycock, S. 2003. Long-term properties of accretion discs in X-ray binaries – II. Stability of radiation-driven warping. MNRAS, 343, 1213–1223.Google Scholar
Corbel, S., and Fender, R. P. 2002. Near-infrared synchrotron emission from the compact jet of GX 339-4. ApJL, 573, L35–L39.Google Scholar
Corbet, R. H. D., Sokoloski, J. L., Mukai, K., Markwardt, C. B., and Tueller, J. 2008. A comparison of the variability of the symbiotic X-ray binaries GX 1+4, 4U 1954+31, and 4U 1700+24 from Swift BAT and RXTE ASM Observations. ApJ, 675, 1424–1435.Google Scholar
Cornelisse, R., Casares, J., Munoz-Darias, T., Steeghs, D., Charles, P., Hynes, R., O'Brien, K., and Barnes, A. 2008 (May). An overview of the Bowen Survey: Detecting donor star signatures in low mass X-ray binaries. Pages 148–152 of: R. M., Bandyopadhyay, S., Wachter, D., Gelino, and C. R., Gelino (eds.), A Population Explosion: The Nature & Evolution of X-ray Binaries in Diverse Environments. American Institute of Physics Conference Series, vol. 1010.
Dhillon, V. S., Marsh, T. R., Copperwheat, C., Bezawada, N., Ives, D., Vick, A., and O'Brien, K. 2008. ULTRASPEC: High-speed spectroscopy with zero readout noise. Pages 132–139 of: D., Phelan, O., Ryan, & A., Shearer (eds.), High Time Resolution Astrophysics: The Universe at Sub-Second Timescales. American Institute of Physics Conference Series, vol. 984.
Dubus, G., Hameury, J.-M., and Lasota, J.-P. 2001. The disc instability model for X-ray transients: evidence for truncation and irradiation. A&A, 373, 251–271.Google Scholar
Dubus, G., Lasota, J.-P., Hameury, J.-M., and Charles, P. 1999. X-ray irradiation in low-mass binary systems. MNRAS, 303, 139–147.Google Scholar
Durant, M., Gandhi, P., Shahbaz, T., Fabian, A. P., Miller, J., Dhillon, V. S., and Marsh, T. R. 2008. Swift J1753.5-0127: a surprising optical/X-ray cross-correlation function. ApJL, 682, L45–L48.Google Scholar
Edelson, R. A., and Krolik, J. H. 1988. The discrete correlation function – a new method for analyzing unevenly sampled variability data. ApJ, 333, 646–659.Google Scholar
Esin, A. A., McClintock, J. E., and Narayan, R. 1997. Advection-dominated accretion and the spectral states of black hole X-ray binaries: application to Nova Muscae 1991. ApJ, 489, 865–889.Google Scholar
Fabian, A. C., Guilbert, P. W., Motch, C., Ricketts, M., Ilovaisky, S. A., and Chevalier, C. 1982. GX 339-4 – Cyclotron radiation from an accretion flow. A&A, 111, L9–L10.Google Scholar
Fender, R. P., Gallo, E., and Jonker, P. G. 2003. Jet-dominated states: an alternative to advection across black hole event horizons in “quiescent” X-ray binaries. MNRAS, 343, L99–L103.Google Scholar
Fitzpatrick, E. L. 1999. Correcting for the effects of interstellar extinction. PASP, 111, 63–75.Google Scholar
Frank, J., King, A., and Raine, D. J. 2002. Accretion Power in Astrophysics, Third ed. Cambridge University Press.
Froning, C. S., Robinson, E. L., and Bitner, M. A. 2007. Near-infrared spectra of the black hole X-ray binary A0620-00. ApJ, 663, 1215–1224.Google Scholar
Fryer, C. L., and Kalogera, V. 2001. Theoretical black hole mass distributions. ApJ, 554, 548–560.Google Scholar
Gallo, E., Fender, R. P., and Hynes, R. I. 2005. The radio spectrum of a quiescent stellar mass black hole. MNRAS, 356, 1017–1021.Google Scholar
Gallo, E., Migliari, S., Markoff, S., Tomsick, J. A., Bailyn, C. D., Berta, S., Fender, R., and Miller-Jones, J. C. A. 2007. The spectral energy distribution of quiescent black hole X-ray binaries: new constraints from spitzer. ApJ, 670, 600–609.Google Scholar
Gandhi, P., Makishima, K., Durant, M., Fabian, A. C., Dhillon, V. S., Marsh, T. R., Miller, J. M., Shahbaz, T., and Spruit, H. C. 2008. Rapid optical and X-ray timing observations of GX 339-4: flux correlations at the onset of a low/hard state. MNRAS, 390, L29–L33.Google Scholar
Gaskell, C. M., and Peterson, B. M. 1987. The accuracy of cross-correlation estimates of quasar emission-line region sizes. ApJS, 65, 1–11.Google Scholar
Gelino, D. M., Harrison, T. E., and Orosz, J. A. 2001. A multiwavelength, multiepoch study of the soft X-ray transient prototype, V616 Monocerotis (A0620-00). AJ, 122, 2668–2678.Google Scholar
Gerend, D., and Boynton, P. E. 1976. Optical clues to the nature of Hercules X-1/HZ Herculis. ApJ, 209, 562–573.Google Scholar
Giacconi, R., Gursky, H., Paolini, F. R., and Rossi, B. B. 1962. Evidence for X-rays from sources outside the solar system. Physical Review Letters, 9, 439–443.Google Scholar
Gottlieb, E. W., Wright, E. L., and Liller, W. 1975. Optical studies of Uhuru sources. XI. A probable period for Scorpius X-1 = V818 Scorpii. ApJL, 195, L33–L35.Google Scholar
Grindlay, J. E., McClintock, J. E., Canizares, C. R., Cominsky, L., Li, F. K., Lewin, W. H. G., and van Paradijs, J. 1978. Discovery of optical bursts from an X-ray burst source, MXB 1735-44. Nature, 274, 567–568.Google Scholar
Hackwell, J. A., Grasdalen, G. L., Gehrz, R. D., Cominsky, L., Lewin, W. H. G., and van Paradijs, J. 1979. The detection of an optical burst coincident with an X-ray burst from MXB 1837+05 (Ser X-1). ApJL, 233, L115–L119.Google Scholar
Hameury, J.-M., Lasota, J.-P., and Warner, B. 2000. The zoo of dwarf novae: illumination, evaporation and disc radius variation. A&A, 353, 244–252.Google Scholar
Haswell, C. A., Hynes, R. I., King, A. R., and Schenker, K. 2002. The ultraviolet line spectrum of the soft X-ray transient XTE J1118+480: a CNO-processed core exposed. MNRAS, 332, 928–932.Google Scholar
Haswell, C. A., King, A. R., Murray, J. R., and Charles, P. A. 2001. Superhumps in low-mass X-ray binaries. MNRAS, 321, 475–480.Google Scholar
Haswell, C. A., Robinson, E. L., Horne, K., Stiening, R. F., and Abbott, T. M. C. 1993. On the mass of the compact object in the black hole binary A0620-00. ApJ, 411, 802–812.Google Scholar
Hellier, C. 2001. On echo outbursts and ER UMa supercycles in SU UMa-type cataclysmic variables. PASP, 113, 469–472.Google Scholar
Horne, K. 1994. Echo mapping problems, maximum entropy solutions. Pages 23–25 of: P. M., Gondhalekar, K., Horne, and B. M., Peterson (eds.), Reverberation Mapping of the Broad-Line Region in Active Galactic Nuclei. Astronomical Society of the Pacific Conference Series, vol. 69.
Horne, K., and Marsh, T. R. 1986. Emission line formation in accretion discs. MNRAS, 218, 761–773.Google Scholar
Hynes, R. I. 2005. The optical and ultraviolet spectral energy distributions of short-period black hole X-ray transients in outburst. ApJ, 623, 1026–1043.Google Scholar
Hynes, R. I., and Haswell, C. A. 1999. Hubble Space Telescope observations of the black hole X-ray transient GRO J0422+32 near quiescence. MNRAS, 303, 101–106.Google Scholar
Hynes, R. I., Bradley, C. K., Rupen, M., Gallo, E., Fender, R. P., Casares, J., and Zurita, C. 2009b. The quiescent spectral energy distribution of V404 Cyg. MNRAS, 399, 2239–2248.Google Scholar
Hynes, R. I., Brien, K. O., Mullally, F., and Ashcraft, T. 2009a. Echo mapping of Swift J1753.5-0127. MNRAS, 399, 281–286.Google Scholar
Hynes, R. I., Charles, P. A., Casares, J., Haswell, C. A., Zurita, C., and Shahbaz, T. 2003b. Fast photometry of quiescent soft X-ray transients with the Acquisition Camera on Gemini-South. MNRAS, 340, 447–456.Google Scholar
Hynes, R. I., Charles, P. A., Haswell, C. A., Casares, J., Zurita, C., and Serra-Ricart, M. 2001. Optical studies of the X-ray transient XTE J2123-058 – II. Phase-resolved spectroscopy. MNRAS, 324, 180–190.Google Scholar
Hynes, R. I., Haswell, C. A., Chaty, S., Shrader, C. R., and Cui, W. 2002. The evolving accretion disc in the black hole X-ray transient XTE J1859+226. MNRAS, 331, 169–179.Google Scholar
Hynes, R. I., Haswell, C. A., Cui, W., Shrader, C. R., O'Brien, K., Chaty, S., Skillman, D. R., Patterson, J., and Horne, K. 2003c. The remarkable rapid X-ray, ultraviolet, optical and infrared variability in the black hole XTE J1118+480. MNRAS, 345, 292–310.Google Scholar
Hynes, R. I., Horne, K., O'Brien, K., Haswell, C. A., Robinson, E. L., King, A. R., Charles, P. A., and Pearson, K. J. 2006b. Multiwavelength observations of EXO 0748-676. I. Reprocessing of X-ray bursts. ApJ, 648, 1156–1168.Google Scholar
Hynes, R. I., Mauche, C. W., Haswell, C. A., Shrader, C. R., Cui, W., and Chaty, S. 2000. The X-ray transient XTE J1118+480: multiwavelength observations of a low-state minioutburst. ApJL, 539, L37–L40.Google Scholar
Hynes, R. I., O'Brien, K., Horne, K., Chen, W., and Haswell, C. A. 1998. Echoes from an irradiated disc in GRO J1655-40. MNRAS, 299, L37–L41.Google Scholar
Hynes, R. I., Robinson, E. L., and Bitner, M. 2005. Observational constraints on cool disk material in quiescent black hole binaries. ApJ, 630, 405–412.Google Scholar
Hynes, R. I., Robinson, E. L., Pearson, K. J., Gelino, D. M., Cui, W., Xue, Y. Q., Wood, M. A., Watson, T. K., Winget, D. E., and Silver, I. M. 2006a. Further evidence for variable synchrotron Emission in XTE J1118+480 in outburst. ApJ, 651, 401–407.Google Scholar
Hynes, R. I., Steeghs, D., Casares, J., Charles, P. A., and O'Brien, K. 2003a. Dynamical evidence for a black hole in GX 339-4. ApJL, 583, L95–L98.Google Scholar
Ilovaisky, S. A., Chevalier, C., White, N. E., Mason, K. O., Sanford, P. W., Delvaille, J. P., and
Schnopper, H. W. 1980. Simultaneous X-ray and optical observations of rapid variability in Scorpius X-1. MNRAS, 191, 81–93.Google Scholar
Johnston, H. M., Kulkarni, S. R., and Oke, J. B. 1989. The black hole A0620-00 and its accretion disk. ApJ, 345, 492–497.Google Scholar
Jonker, P. G., Steeghs, D., Nelemans, G., and van der Klis, M. 2005. The radial velocity of the companion star in the low-mass X-ray binary 2S 0921-630: limits on the mass of the compact object. MNRAS, 356, 621–626.Google Scholar
Kanbach, G., Straubmeier, C., Spruit, H. C., and Belloni, T. 2001. Correlated fast X-ray and optical variability in the black-hole candidate XTE J1118+480. Nature, 414, 180–182.Google Scholar
King, A. R., and Ritter, H. 1998. The light curves of soft X-ray transients. MNRAS, 293, L42–L48.Google Scholar
Koen, C. 2003. The analysis of indexed astronomical time-series – VIII. Cross-correlating noisy autoregressive series. MNRAS, 344, 798–808.Google Scholar
Kong, A. K. H., McClintock, J. E., Garcia, M. R., Murray, S. S., and Barret, D. 2002. The X-ray spectra of black hole x-ray novae in quiescence as measured by Chandra. ApJ, 570, 277–286.Google Scholar
Kuulkers, E. 1998. A0620-00 revisited: a black-hole transient case-study. New Astronomy Review, 42, 1–22.Google Scholar
Lasota, J.-P. 2001. The disc instability model of dwarf novae and low-mass X-ray binary transients. New Astronomy Review, 45, 449–508.Google Scholar
Lawrence, A., Cominsky, L., Engelke, C., Jernigan, G., Lewin, W. H. G., Matsuoka, M., Mitsuda, K., Oda, M., Ohashi, T., Pedersen, H., and van Paradijs, J. 1983. Simultaneous U, B, V, and X-ray measurements of a burst from 4U/MXB 1636-53. ApJ, 271, 793–803.Google Scholar
Lewin, W. H. G., and van der Klis, M. (eds). 2006. Compact Stellar X-Ray Sources. Cambridge Astrophysics Series, vol. 39. Cambridge University Press.
Lewin, W. H. G., van Paradijs, J., and van den Heuvel, E. P. J. (eds). 1995. X-ray Binaries. Cambridge Astrophysics Series, vol. 26. Cambridge University Press.
Lynden-Bell, D. 1969. Galactic nuclei as collapsed old quasars. Nature, 223, 690–694.Google Scholar
Markoff, S., Falcke, H., and Fender, R. 2001. A jet model for the broadband spectrum of XTE J1118+480. Synchrotron emission from radio to X-rays in the Low/Hard spectral state. A&A, 372, L25–L28.Google Scholar
Marsh, T. R. 2001. Doppler tomography. Pages 1–26 of: H. M. J., Boffin, D., Steeghs, and J., Cuypers (eds.), Astrotomography, Indirect Imaging Methods in Observational Astronomy. Lecture Notes in Physics, Springer Verlag, vol. 573.
Marsh, T. R., Robinson, E. L., and Wood, J. H. 1994. Spectroscopy of A0620-00 – the mass of the black-hole and an image of its accretion disc. MNRAS, 266, 137–154.Google Scholar
Mason, K. O., Seitzer, P., Tuohy, I. R., Hunt, L. K., Middleditch, J., Nelson, J. E., and White, N. E. 1980. A 5.57 hr modulation in the optical counterpart of 2S 1822-371. ApJL, 242, L109–L113.Google Scholar
McClintock, J. E., and Remillard, R. A. 1986. The black hole binary A0620-00. ApJ, 308, 110–122.Google Scholar
McClintock, J. E., and Remillard, R. A. 2000. HST/STIS UV spectroscopy of two quiescent X-ray novae: A0620-00 and Centaurus X-4. ApJ, 531, 956–962.Google Scholar
McClintock, J. E., Canizares, C. R., and Tarter, C. B. 1975. On the origin of 4640-4650 A emission in X-ray stars. ApJ, 198, 641–652.Google Scholar
McClintock, J. E., Canizares, C. R., Cominsky, L., Li, F. K., Lewin, W. H. G., van Paradijs, J., and Grindlay, J. E. 1979. A 3-s delay in an optical burst from X-ray burst source MXB 1735-44. Nature, 279, 47–49.Google Scholar
McClintock, J. E., Horne, K., and Remillard, R. A. 1995. The dim inner accretion disk of the quiescent black hole A0620-00. ApJ, 442, 358–365.Google Scholar
McClintock, J. E., Narayan, R., Garcia, M. R., Orosz, J. A., Remillard, R. A., and Murray, S. S. 2003. Multiwavelength spectrum of the black hole XTE J1118+480 in quiescence. ApJ, 593, 435–451.Google Scholar
McGowan, K. E., Charles, P. A., O'Donoghue, D., and Smale, A. P. 2003. Correlated optical and X-ray variability in LMC X-2. MNRAS, 345, 1039–1048.Google Scholar
Migliari, S., Tomsick, J. A., Maccarone, T. J., Gallo, E., Fender, R. P., Nelemans, G., and Russell, D. M. 2006. Spitzer reveals infrared optically thin synchrotron emission from the compact jet of the neutron star X-ray binary 4U 0614+091. ApJL, 643, L41–L44.Google Scholar
Migliari, S., Tomsick, J. A., Miller-Jones, J. C. A., Heinz, S., Hynes, R. I., Fender, R. P., Gallo, E., Jonker, P. G., and Maccarone, T. J. 2010. The complete spectrum of the neutron star X-ray binary 4U0614+091. ApJ, 710, 117–124.Google Scholar
Mirabel, I. F., and Rodríguez, L. F. 1994. A superluminal source in the Galaxy. Nature, 371, 46–48.Google Scholar
Motch, C., Ilovaisky, S. A., and Chevalier, C. 1982. Discovery of fast optical activity in the X-ray source GX 339-4. A&A, 109, L1–L4.Google Scholar
Motch, C., Ricketts, M. J., Page, C. G., Ilovaisky, S. A., and Chevalier, C. 1983. Simultaneous X-ray/optical observations of GX339-4 during the May 1981 optically bright state. A&A, 119, 171–176.Google Scholar
Muno, M. P., and Mauerhan, J. 2006. Mid-infrared emission from dust around quiescent low-mass X-ray binaries. ApJL, 648, L135–L138.Google Scholar
Munoz-Darias, T., Casares, J., and Martínez-País, I. G. 2005. The “K-correction” for irradiated emission lines in LMXBs: evidence for a massive neutron star in X1822-371 (V691 CrA). ApJ, 635, 502–507.Google Scholar
Muñoz-Darias, T., Martínez-País, I. G., Casares, J., Dhillon, V. S., Marsh, T. R., Cornelisse, R., Steeghs, D., and Charles, P. A. 2007. Echoes from the companion star in Sco X-1. MNRAS, 379, 1637–1646.Google Scholar
Narayan, R., and McClintock, J. E. 2005. Inclination effects and beaming in black hole X-ray binaries. ApJ, 623, 1017–1025.Google Scholar
Narayan, R., and Raymond, J. 1999. Thermal X-ray line emission from accreting black holes. ApJL, 515, L69–L72.Google Scholar
Narayan, R., Barret, D., and McClintock, J. E. 1997. Advection-dominated accretion model of the black hole V404 Cygni in quiescence. ApJ, 482, 448–464.Google Scholar
Narayan, R., McClintock, J. E., and Yi, I. 1996. A new model for black hole soft X-ray transients in quiescence. ApJ, 457, 821–833.Google Scholar
Neil, E. T., Bailyn, C. D., and Cobb, B. E. 2007. Infrared monitoring of the microquasar GRS 1915+105: detection of orbital and superhump signatures. ApJ, 657, 409–414.Google Scholar
Nelemans, G., Jonker, P. G., and Steeghs, D. 2006. Optical spectroscopy of (candidate) ultracompact X-ray binaries: constraints on the composition of the donor stars. MNRAS, 370, 255–262.Google Scholar
Nelemans, G., Jonker, P. G., Marsh, T. R., and van der Klis, M. 2004. Optical spectra of the carbon-oxygen accretion discs in the ultra-compact X-ray binaries 4U 0614+09, 4U 1543-624 and 2S 0918-549. MNRAS, 348, L7–L11.Google Scholar
O'Brien, K., Horne, K., Hynes, R. I., Chen, W., Haswell, C. A., and Still, M. D. 2002. Echoes in X-ray binaries. MNRAS, 334, 426–434.Google Scholar
O'Donoghue, D., and Charles, P. A. 1996. Have superhumps been seen in black hole soft X-ray transients?MNRAS, 282, 191–205.Google Scholar
Ogilvie, G. I., and Dubus, G. 2001. Precessing warped accretion discs in X-ray binaries. MNRAS, 320, 485–503.Google Scholar
Orosz, J. A. 2001. The spectroscopic mass ratio of the black hole binary XTE J1118+480. The Astronomer's Telegram, 67.Google Scholar
Orosz, J. A., and Kuulkers, E. 1999. The optical light curves of Cygnus X-2 (V1341 Cyg) and the mass of its neutron star. MNRAS, 305, 132–142.Google Scholar
Orosz, J. A., McClintock, J. E., Narayan, R., Bailyn, C. D., Hartman, J. D., Macri, L., Liu, J., Pietsch, W., Remillard, R. A., Shporer, A., and Mazeh, T. 2007. A 15.65-solar-mass black hole in an eclipsing binary in the nearby spiral galaxy M 33. Nature, 449, 872–875.Google Scholar
Osaki, Y., Meyer, F., and Meyer-Hofmeister, E. 2001. Repetitive rebrightening of EG Cancri: evidence for viscosity decay in the quiescent disk?A&A, 370, 488–495.Google Scholar
Ozel, F., and Psaltis, D. 2009. Reconstructing the neutron-star equation of state from astro-physical measurements. Phys. Rev. D, 80, 103003.Google Scholar
Parmar, A. N., White, N. E., Giommi, P., Haberl, F., Pedersen, H., and Mayor, M. 1985. EXO 0748-676. IAU Circ., 4039.Google Scholar
Patterson, J., Kemp, J., Skillman, D. R., Harvey, D. A., Shafter, A. W., Vanmunster, T., Jensen, L., Fried, R., Kiyota, S., Thorstensen, J. R., and Taylor, C. J. 1998. Superhumps in cataclysmic binaries. XV. EG Cancri, king of the echo outbursts. PASP, 110, 1290–1303.Google Scholar
Pearson, K. J., Hynes, R. I., Steeghs, D., Jonker, P. G., Haswell, C. A., King, A. R., O'Brien, K., Nelemans, G., and Míendez, M. 2006. Multiwavelength observations of EXO 0748-676. II. Emission-line behavior. ApJ, 648, 1169–1180.Google Scholar
Pedersen, H., Lub, J., Inoue, H., Koyama, K., Makishima, K., Matsuoka, M., Mitsuda, K., Murakami, T., Oda, M., Ogawara, Y., Ohashi, T., Shibazaki, N., Tanaka, Y., Hayakawa, S., Kunieda, H., Makino, F., Masai, K., Nagase, F., Tawara, Y., Miyamoto, S., Tsunemi, H., Yamashita, K., Kondo, I., Jernigan, J. G., van Paradijs, J., Beardsley, A., Cominsky, L., Doty, J., and Lewin, W. H. G. 1982. Simultaneous optical and X-ray bursts from 4U/MXB 1636-53. ApJ, 263, 325–339.Google Scholar
Peterson, B. M., and Horne, K. 2006. Reverberation mapping of active galactic nuclei. Page 89 of: M., Livio and S., Casertano (eds.), Planets to Cosmology: Essential Science in the Final Years of the Hubble Space Telescope. Space Telescope Science Institute Symposium Series. Cambridge University Press.
Petro, L. D., Bradt, H. V., Kelley, R. L., Horne, K., and Gomer, R. 1981. Rapid X-ray and optical flares from Scorpius X-1. ApJL, 251, L7–L11.Google Scholar
Pfahl, E., Rappaport, S., and Podsiadlowski, P. 2003. The galactic population of low- and intermediate-mass x-ray binaries. ApJ, 597, 1036–1048.Google Scholar
Pietsch, W., Steinle, H., and Gottwald, M. 1983. 4U 2129+47 = V1727 Cygni. IAU Circ., 3887.Google Scholar
Quataert, E., and Narayan, R. 1999. Spectral models of advection-dominated accretion flows with winds. ApJ, 520, 298–315.Google Scholar
Reynolds, M. T., Callanan, P. J., and Filippenko, A. V. 2007. Keck infrared observations of GRO J0422+32 in quiescence. MNRAS, 374, 657–663.Google Scholar
Sandage, A., Osmer, P., Giacconi, R., Gorenstein, P., Gursky, H., Waters, J., Bradt, H., Garmire, G., Sreekantan, B. V., Oda, M., Osawa, K., and Jugaku, J. 1966. On the optical identification of Sco X-1. ApJ, 146, 316–321.Google Scholar
Shahbaz, T., Bandyopadhyay, R., Charles, P. A., and Naylor, T. 1996. Infrared spectroscopy of V404 Cygni: limits on the accretion disc contamination. MNRAS, 282, 977–981.Google Scholar
Shahbaz, T., Casares, J., Watson, C. A., Charles, P. A., Hynes, R. I., Shih, S. C., and Steeghs, D. 2004. The Massive neutron star or low-mass black hole in 2S 0921-630. ApJL, 616, L123–L126.Google Scholar
Shahbaz, T., Dhillon, V. S., Marsh, T. R., Casares, J., Zurita, C., Charles, P. A., Haswell, C. A., and Hynes, R. I. 2005. ULTRACAM observations of the black hole X-ray transient XTE J1118+480 in quiescence. MNRAS, 362, 975–982.Google Scholar
Shahbaz, T., Dhillon, V. S., Marsh, T. R., Zurita, C., Haswell, C. A., Charles, P. A., Hynes, R. I., and Casares, J. 2003. Multicolour observations of V404 Cyg with ULTRACAM. MNRAS, 346, 1116–1124.Google Scholar
Shahbaz, T., Fender, R. P., Watson, C. A., and O'Brien, K. 2008a. The first polarimetric signatures of infrared jets in X-ray binaries. ApJ, 672, 510–515.Google Scholar
Shahbaz, T., Ringwald, F. A., Bunn, J. C., Naylor, T., Charles, P. A., and Casares, J. 1994. The mass of the black hole in V404 Cygni. MNRAS, 271, L10–L14.Google Scholar
Shahbaz, T., Watson, C. A., Zurita, C., Villaver, E., and Hernandez-Peralta, H. 2008b. Time-resolved optical photometry of the ultracompact binary 4U 0614+091. PASP, 120, 848–851.Google Scholar
Shakura, N. I., and Sunyaev, R. A. 1973. Black holes in binary systems. Observational appearance. A&A, 24, 337–355.Google Scholar
Smith, A. J., Haswell, C. A., Murray, J. R., Truss, M. R., and Foulkes, S. B. 2007. Comprehensive simulations of superhumps. MNRAS, 378, 785–800.Google Scholar
Steeghs, D. 2003. Extending emission-line Doppler tomography: mapping-modulated line flux. MNRAS, 344, 448–454.Google Scholar
Steeghs, D., and Casares, J. 2002. The mass donor of Scorpius X-1 revealed. ApJ, 568, 273–278.Google Scholar
Strohmayer, T., and Bildsten, L. 2006. New views of thermonuclear bursts. Pages 113–156 of: Lewin, W. H. G., and van der Klis, M. (eds.), Compact Stellar X-ray Sources. Cambridge University Press.
Thorstensen, J., Charles, P., Bowyer, S., Briel, U. G., Doxsey, R. E., Griffiths, R. E., and Schwartz, D. A. 1979. A precise position and optical identification for 4U 2129+47 – X-ray heating and a 5.2 hour binary period. ApJL, 233, L57–L61.Google Scholar
Truss, M. R., Wynn, G. A., Murray, J. R., and King, A. R. 2002. The origin of the rebrightening in soft X-ray transient outbursts. MNRAS, 337, 1329–1339.Google Scholar
Uemura, M., Kato, T., Matsumoto, K., Honkawa, M., Cook, L., Martin, B., Masi, G., Oksanen, A., Moilanen, M., Novak, R., Sano, Y., and Ueda, Y. 2000. XTE J1118+480. IAU Circ., 7418.Google Scholar
van der Klis, M. 2006. Rapid x-ray variability. Pages 39–112 of: Lewin, W. H. G., and van der Klis, M. (eds.), Compact Stellar X-Ray Sources. Cambridge Astrophysics Series, vol. 39. Cambridge University Press.
von Zeipel, H. 1924. The radiative equilibrium of a rotating system of gaseous masses. MNRAS, 84, 665–683.Google Scholar
Wade, R. A., and Horne, K. 1988. The radial velocity curve and peculiar TiO distribution of the red secondary star in Z Chamaeleontis. ApJ, 324, 411–430.Google Scholar
White, N. E., and Swank, J. H. 1982. The discovery of 50 minute periodic absorption events from 4U 1915-05. ApJL, 253, L61–L66.Google Scholar
Whitehurst, R., and King, A. 1991. Superhumps, resonances and accretion discs. MNRAS, 249, 25–35.Google Scholar
Wijers, R. A. M. J., and Pringle, J. E. 1999. Warped accretion discs and the long periods in X-ray binaries. MNRAS, 308, 207–220.Google Scholar
Wolff, M. T., Ray, P. S., Wood, K. S., and Hertz, P. L. 2009. Eclipse timings of the transient low-mass X-ray binary EXO 0748-676. IV. The Rossi X-Ray Timing Explorer eclipses. ApJS, 183, 156–170.Google Scholar
Zurita, C., Casares, J., Shahbaz, T., Charles, P. A., Hynes, R. I., Shugarov, S., Goransky, V., Pavlenko, E. P., and Kuznetsova, Y. 2000. Optical studies of the X-ray transient XTE J2123-058 – I. Photometry. MNRAS, 316, 137–142.Google Scholar
Zurita, C., Casares, J., Shahbaz, T., Wagner, R. M., Foltz, C. B., Rodriguez-Gil, P., Hynes, R. I., Charles, P. A., Ryan, E., Schwarz, G., and Starrfield, S. G. 2002. Detection of superhumps in XTE J1118+480 approaching quiescence. MNRAS, 333, 791–799.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×