Skip to main content Accessibility help
×
Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-22T18:04:15.495Z Has data issue: false hasContentIssue false

References

Published online by Cambridge University Press:  19 December 2024

James Gillespie
Affiliation:
Ramapo College of New Jersey
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2025

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adámek, J. and Rosický, J., Locally presentable and accessible categories, London Mathematical Society Lecture Note Series vol. 189, Cambridge University Press, Cambridge, 1994.CrossRefGoogle Scholar
Assem, I., Beligiannis, A., and Marmaridis, N., Right triangulated categories with right semi-equivalences, Canadian Mathematical Society Conference Proceedings vol. 24, 1998, pp. 1737.Google Scholar
Auslander, M. and Bridger, M., Stable module theory, Mem. Amer. Math. Soc. No. 94, American Mathematical Society, Providence, RI, 1969, 146pp.Google Scholar
Auslander, M. and I. Reiten, Applications of contravariantly finite subcategories, Adv. Math. vol. 86, 1991, pp. 111152.Google Scholar
Balmer, P., The spectrum of prime ideals in tensor triangulated categories, J. Reine Angew. Math. no. 588, 2005, pp. 149168.Google Scholar
Bass, H. On the ubiquity of Gorenstein rings, Math. Zeit. vol. 82, 1963, pp. 828.Google Scholar
Bazzoni, S., Cortés-Izurdiaga, M., and Estrada, S., Periodic modules and acyclic complexes, Algebr. Represent. Theory vol. 23, no. 5, 2020, pp. 18611883.Google Scholar
Becker, H. Models for singularity categories, Adv. Math. vol. 254, 2014, pp. 187232.Google Scholar
Becker, H., Homotopy-theoretic studies of Khovanov-Rozansky homology, PhD thesis, University of Bonn, 2015 (online at www.math.uni-bonn.de/people/habecker/).Google Scholar
Beilinson, A. A., Bernstein, J., and Deligne, P., Faisceaux pervers, Astérisque vol. 100, 1982, pp. 5171.Google Scholar
Beke, T., Sheafifiable homotopy model categories, Math. Proc. Camb. Phil. Soc. vol. 129, no. 3, 2000, pp. 447475.Google Scholar
Beligiannis, A., Homotopy theory of modules and Gorenstein rings, Math. Scand. vol. 89, 2001, pp. 545.Google Scholar
Beligiannis, A. and Marmaridis, N., Left triangulated categories arising from contravariantly finite subcategories, Comm. Alg. vol. 22, no. 12, 1994, pp. 50215036.Google Scholar
Beligiannis, A. and Reiten, I., Homological and homotopical aspects of torsion theories, Mem. Amer. Math. Soc. vol. 188, no. 883, 2007.Google Scholar
Bican, L., Bashir, R. El and Enochs, E., All modules have flat covers, Bull. London Math. Soc. vol. 33, no. 4, 2001, pp. 385390.Google Scholar
Bravo, D., The stable derived category of a ring via model categories, PhD thesis, Wesleyan University, May 2011. 401Google Scholar
Bravo, D., Gillespie, J. and Hovey, M., The stable module category of a general ring, 2014, arXiv:1405.5768.Google Scholar
Buchweitz, R.-O., Maximal Cohen–Macaulay modules and Tate-cohomology over Gorenstein rings, Unpublished manuscript, http://hdl.handle.net/1807/16682, 1986.Google Scholar
Bühler, T., Exact Categories, Expo. Math. vol. 28, no. 1, 2010, pp. 169.Google Scholar
Cole, M., Mixing model structures, Topology Appl. vol. 153, 2006, pp. 10161032.Google Scholar
Christensen, L. W., Estrada, S., and Thompson, P., The stable category of Gorenstein flat sheaves on a Noetherian scheme, Proc. Amer. Math. Soc. vol. 149, no. 2, 2021, pp. 525538.Google Scholar
Colpi, R. and Fuller, K. R., Tilting objects in abelian categories and quasitilted rings, Trans. Amer. Math. Soc. vol. 359, no. 2, 2007, pp. 741765.Google Scholar
Ding, N. and Chen, J., The flat dimensions of injective modules, Manuscripta Math. vol. 78, no. 2, 1993, pp. 165177.Google Scholar
Ding, N. and Chen, J., Coherent rings with finite self-FP-injective dimension, Comm. Algebra vol. 24, no. 9, 1996, pp. 29632980.Google Scholar
Dugger, D., Combinatorial model categories have presentations, Adv. Math. vol. 164, 2001, pp. 177201.Google Scholar
Dwyer, W. G. and Spalinski, J., Homotopy theories and model categories, Handbook of Algebraic Topology, North-Holland, Amsterdam, 1995, pp. 73126.Google Scholar
Eklof, P. C., Homological algebra and set theory, Trans. Amer. Math. Soc. vol. 227, 1977, pp. 207225.Google Scholar
Eklof, P. C. and Trlifaj, J., How to make Ext vanish, Bull. London Math. Soc. vol. 33, no. 1, 2001, pp. 4151.Google Scholar
Emmanouil, I., On pure acyclic complexes, J. Algebra vol. 465, 2016, pp. 190213.Google Scholar
Emmanouil, I. and Kaperonis, I., On K-absolutely pure complexes, J. Algebra vol. 640, 2024, pp. 274299.Google Scholar
Enochs, E., and Estrada, S., Relative homological algebra in the category of quasicoherent sheaves, Adv. Math. vol. 194, no. 2, 2005, pp. 284295.Google Scholar
Enochs, E., Estrada, S., and Iacob, A., Cotorsion pairs, model structures and adjoints in homotopy categories, Houston J. Math. vol. 40, no. 1, 2014, pp. 4361.Google Scholar
Enochs, E. E. and Jenda, O. M. G., Gorenstein injective and projective modules, Math. Zeit. vol. 220, 1995, pp. 611633.Google Scholar
Enocks, E. and Jenda, O., Relative homological algebra, de Gruyter Expositions in Mathematics vol. 30, Walter de Gruyter, Berlin, 2000.CrossRefGoogle Scholar
Enochs, E. and Jenda, O., Relative homological algebra, Volume 2, de Gruyter Expositions in Mathematics vol. 54, Walter de Gruyter, Berlin, 2011, xii+96 pp.Google Scholar
Enochs, E. and Oyonarte, L., Flat covers and cotorsion envelopes of sheaves, Proc. Amer. Maths. Soc. vol. 130, no. 5, 2001, pp. 12851292.Google Scholar
Estrada, S. and Gillespie, J., The projective stable category of a coherent scheme, Proc. Royal Soc. Edinburgh vol. 149, no. 1, 2019, pp. 1543.Google Scholar
Estrada, S. and Gillespie, J., Quillen equivalences inducing Grothendieck duality for unbounded chain complexes of sheaves, Commun. Contemp. Math., 2024. https://doi.org/10.1142/S0219199724500342.CrossRefGoogle Scholar
Estrada, S., Gillespie, J., and Odabas¸ı, S., Pure exact structures and the pure derived category of a scheme, Math. Proc. Cambridge Philos. Soc. vol. 163, no. 2, 2017, pp. 251264.Google Scholar
Estrada, S., Gillespie, J., and Odabas¸ı, S., K-flatness in Grothendieck categories: Application to quasi-coherent sheaves, Collect. Math., 2024. https://doi.org/10.1007/s13348-024-00439-7CrossRefGoogle Scholar
Frerik, L. and Sieg, D., Exact categories in functional analysis, 2010. Online lecture notes, available at: www.math.uni-trier.de/abteilung/analysis/HomAlg.pdf.Google Scholar
Freyd, P. Splitting homotopy idempotents, Proceeding of the Conference on Categorical Algebra, La Jolla 1965, Springer, New York, 1966, pp. 173176.Google Scholar
García-Rozas, J. R., Covers and envelopes in the category of complexes of modules, Research Notes in Mathematics no. 407, Chapman & Hall/CRC, Boca Raton, FL, 1999.Google Scholar
Gillespie, J., The flat model structure on Ch(R), Trans. Amer. Math. Soc. vol. 356, no. 8, 2004, pp. 33693390.Google Scholar
Gillespie, J., The flat model structure on chain complexes of sheaves, Trans. Amer. Math. Soc. vol. 358, no. 7, 2006, pp. 28552874.Google Scholar
Gillespie, J., Kaplansky classes and derived categories, Math. Zeit. vol. 257, no. 4, 2007, pp. 811843.Google Scholar
Gillespie, J., Model structures on modules over Ding–Chen rings, Homology, Homotopy Appl. vol. 12, no. 1, 2010, pp. 6173.Google Scholar
Gillespie, J., Model structures on exact categories, J. Pure. Appl. Algebra vol. 215, 2011, pp. 28922902.Google Scholar
Gillespie, J., The homotopy category of N-complexes is a homotopy category, J. Homotopy and Related Structures vol. 10, no. 1, 2015a, pp. 93106.Google Scholar
Gillespie, J., How to construct a Hovey triple from two cotorsion pairs, Fundamenta Mathematicae vol. 230, no. 3, 2015b, pp. 281289.Google Scholar
Gillespie, J., Gorenstein complexes and recollements from cotorsion pairs, Adv. Math. vol. 291, 2016a, pp. 859911.Google Scholar
Gillespie, J., Exact model structures and recollements, J. Algebra vol. 458, 2016b, pp. 265306.Google Scholar
Gillespie, J., The derived category with respect to a generator, Ann. Mat. Pura Appl. (4) vol. 195, no. 2, 2016c, pp. 371402.Google Scholar
Gillespie, J., Models for mock homotopy categories of projectives, Homology, Homotopy Appl. vol. 18, no. 1, 2016d, pp. 247263.Google Scholar
Gillespie, J., Hereditary abelian model categories, Bull. Lond. Math. Soc. vol. 48, no. 6, 2016e, pp. 895922.Google Scholar
Gillespie, J., The flat stable module category of a coherent ring, J. Pure Appl. Algebra vol. 221, no. 8, 2017a, pp. 20252031.Google Scholar
Gillespie, J., On Ding injective, Ding projective and Ding flat modules and complexes, Rocky Mountain J. Math. vol. 47, no. 8, 2017b, pp. 26412673.Google Scholar
Gillespie, J., Canonical resolutions in hereditary abelian model categories, Pacific J. Math. vol. 313, no. 2, 2021, pp. 365411.Google Scholar
Gillespie, J., K-flat complexes and derived categories, Bull. London Math. Soc. vol. 55, no. 1, 2023a, pp. 119136.Google Scholar
Gillespie, J., The homotopy category of acyclic complexes of pure–projective modules, Forum Mathematicum vol. 35, no. 2, 2023b, pp. 507521.Google Scholar
Göbel, R. and Trlifaj, J., Approximations and endomorphism algebras of modules, de Gruyter Expositions in Mathematics vol. 41, Walter de Gruyter & Co., Berlin, 2006.CrossRefGoogle Scholar
Golasiński, M. and Gromadzki, G., The homotopy category of chain complexes is a homotopy category, Colloq. Math. vol. 47, no. 2, 1982, pp. 173178.Google Scholar
Happel, D. Triangulated categories in the representation theory of finite-dimensional algebras, London Mathematical Society Lecture Note Series vol. 119, Cambridge University Press, Cambridge, 1988.CrossRefGoogle Scholar
Heller, A., The loop-space functor in homological algebra, Trans. Amer. Math. Soc. vol. 96, no. 3, 1960, pp. 382394.Google Scholar
Hirschhorn, P. S., Model categories and their localizations, Mathematical Surveys and Monographs vol. 99, American Mathematical Society, 2003.Google Scholar
Holm, H., Gorenstein homological dimensions, J. Pure Appl. Algebra vol. 189, 2004, pp. 167193.Google Scholar
Holm, H. and Jørgensen, P., Compactly generated homotopy categories, Homology, Homotopy Appl. vol. 9, no. 1, 2007, pp. 257274.Google Scholar
Holm, H. and Jørgensen, P., Cotorsion pairs in categories of quiver representations, Kyoto J. Math. vol. 59, no. 3, 2019, pp. 575606.Google Scholar
Holm, H. and Jørgensen, P., Model categories of quiver representations, Adv. Math. vol. 357, 2019, Article no. 106826, 46 pp.Google Scholar
Holm, H. and Jørgensen, P., The Q-shaped derived category of a ring, J. London Math. Soc. (2) vol. 106, no. 4, 2022, pp. 32633316.Google Scholar
Holm, H. and Jørgensen, P., The Q-shaped derived category of a ring – compact and perfect objects, Trans. Amer. Math. Soc. vol. 377, 2024a, pp. 30953128. https://doi.org/10.1090/tran/8979.Google Scholar
Holm, H. and Jørgensen, P., A brief introduction to the Q-shaped derived category, Abel Symp. vol. 17, 2024b, pp. 141167. Proceedings of the Abel Symposium 2022.Google Scholar
Hovey, M., Model categories, Mathematical Surveys and Monographs vol. 63, American Mathematical Society, 1999.Google Scholar
Hovey, M., Model category structures on chain complexes of sheaves, Trans. Amer. Math. Soc. vol. 353, no. 6, 2001, pp. 24412457.Google Scholar
Hovey, M., Cotorsion pairs, model category structures, and representation theory, Mathematische Zeitschrift vol. 241, 2002, pp. 553592.Google Scholar
Hovey, M., Palmieri, J., and Strickland, N., Axiomatic stable homotopy theory, Mem. Amer. Math. Soc. vol. 128, no. 610, 1997.Google Scholar
Iverson, B., Cohomology of sheaves, Universitext, Springer-Verlag, Berlin, 1986.CrossRefGoogle Scholar
Iwanaga, Y., On rings with finite self-injective dimension, Comm. Algebra vol. 7, no. 4, 1979, pp. 393414.Google Scholar
Iwanaga, Y., On rings with finite self-injective dimension II, Tsukuba J. Math. vol. 4, no. 1, 1980, pp. 107113.Google Scholar
Jørgensen, P., The homotopy category of complexes of projective modules, Adv. Math. vol. 193, no. 1, 2005, pp. 223232.Google Scholar
Jørgensen, P., Existence of Gorenstein projective resolutions and Tate cohomology, J. Eur. Math. Soc. (JEMS) vol. 9, no. 1, 2007, pp. 5976.Google Scholar
Keller, B., Chain complexes and stable categories, Manuscripta Math. vol. 67, no. 4, 1990, pp. 379417.Google Scholar
Keller, B., Derived categories and their uses, in: Handbook of Algebra vol. 1, North-Holland, Amsterdam, 1996, pp. 671701.Google Scholar
Keller, B. and Vossieck, D., Sous les catégories dérivées, C. R. Acad. Sci. Paris vol. 305, 1987, pp. 225228.Google Scholar
Kelly, J., The homotopy theory of convenient modules, 2023, preprint.Google Scholar
Kelly, J., Homotopy in exact categories, Mem. Amer. Math. Soc. vol. 298, no. 1490, 2024. https://doi.org/10.1090/memo/1490.CrossRefGoogle Scholar
Krause, H., On Neeman’s well generated triangulated categories, Doc. Math. 6, 2001, pp. 121126.Google Scholar
Krause, H., The stable derived category of a Noetherian scheme, Compos. Math. vol. 141, no. 5, 2005, pp. 11281162.Google Scholar
Li, Z.-W., The left and right triangulated structures of stable categories, Comm. Alg. vol. 43, no. 9, 2015, pp. 37253753.Google Scholar
Li, Z.-W., A note on model structures on arbitrary Frobenius categories, Czech. Math. J. vol. 67, no. 2, 2017, pp. 329337.Google Scholar
Mac Lane, S., Homology, Die Grundlehren der mathematischen Wissenschaften vol.114, Springer-Verlag, Berlin, Heidelberg, 1963.CrossRefGoogle Scholar
Mac Lane, S., Categories for the working mathematician, Graduate Texts in Mathematatics vol. 5, Springer-Verlag, New York, 2nd ed., 1998.Google Scholar
May, P., The additivity of traces in triangulated categories, Adv. Math. vol. 163, no. 1, 2001, pp. 3473.Google Scholar
Mitchell, B., Theory of categories, Pure and Applied Mathematics vol. 17, Academic Press, New York, London, 1965.Google Scholar
Moreau, T., Stability of (mixed) exact model categories, personal communication, 2020.Google Scholar
Nakaoka, H. and Palu, Y., Extriangulated categories, Hovey twin cotorsion pairs and model structures, Cah. Topol. Géom. Différ. Catég. LX, 2019.Google Scholar
Neeman, A., Triangulated categories, Annals of Mathematics Studies vol. 148, Princeton University Press, Princeton, 2001.CrossRefGoogle Scholar
Neeman, A., The homotopy category of flat modules, and Grothendieck duality, Invent. Math. vol. 174, no. 2, 2008, pp. 255308.Google Scholar
Palu, Y., Some applications of extriangulated categories, Abel Symp. 17, 2024, pp. 217254. Proceedings of the Abel Symposium 2022.Google Scholar
Pérez, M., Introduction to abelian model structures and Gorenstein homological dimensions, Monographs and Research Notes in Mathematics, Chapman & Hall, 2016.CrossRefGoogle Scholar
Positselski, L. and Šťovíček, J., Flat quasi-coherent sheaves as direct limits, and quasicoherent cotorsion periodicity, 2023, arXiv:2212.09639v1.Google Scholar
Prosmans, F., Derived categories for functional analysis, Publ. Res. Inst. Math. Sci. vol. 36, no. 1, 2000, pp. 1983.Google Scholar
Prosmans, F. and Schneiders, J.-P., A homological study of bornological spaces, Laboratoire analyse, géométrie et applications, Unité mixte de recherche, Institut Galileé, Université Paris 13, CNRS, 2000.Google Scholar
Quillen, D., Homotopical algebra, SLNM vol. 43, Springer-Verlag, Berlin, Heidelberg, 1967.CrossRefGoogle Scholar
Quillen, D. Rational homotopy theory, Ann. of Math. vol. 90, no. 2, 1969, pp. 205295.Google Scholar
Quillen, D., Higher algebraic K-theory I, SLNM vol. 341, Springer-Verlag, Berlin, Heidelberg, 1973, pp. 85147.Google Scholar
Rosický, J., Generalized Brown representability in homotopy categories, Theory Appl. Categ. vol. 14, no. 19, 2005, pp. 451479.Google Scholar
Salce, L., Cotorsion theories for abelian groups, Symposia Math. vol. 23, 1979, pp. 1132.Google Scholar
Saoŕın, M. and Šťovíček, J., On exact categories and applications to triangulated adjoints and model structures, Adv. Math. vol. 228, no. 2, 2011, pp. 9681007.Google Scholar
Šaroch, J. and Šťovíček, J., Singular compactness and definability for Σ-cotorsion and Gorenstein modules, Selecta Math. (N.S.) vol. 26, no. 2, 2020, Paper No. 23, 40 pp.Google Scholar
Schneiders, J.-P., Quasi-abelian categories and sheaves, Mém. Soc. Math. Fr. vol. 76, Société mathématique de France, 1999.Google Scholar
Spaltenstein, N., Resolutions of unbounded complexes, Compos. Math. vol. 65, no. 2, 1988, pp. 121154.Google Scholar
Stenström, B., Rings of quotients, Die Grundlehren der mathematischen Wissenschaften in Einzeldarstellungen Band 217, Springer-Verlag, New York, 1975.CrossRefGoogle Scholar
Šťovíček, J., Exact model categories, approximation theory, and cohomology of quasicoherent sheaves, Advances in Representation Theory of Algebras (ICRA Bielefeld, Germany, 8–17 August, 2012), EMS Series of Congress Reports, European Mathematical Society Publishing House, Helsinki, 2014, pp. 297367.Google Scholar
Šťovíček, J., On purity and applications to coderived and singularity categories, 2015, arXiv:1412.1615.Google Scholar
Trlifaj, J., Ext and inverse limits, Illinois J. Math. vol. 47, nos. 1–2, 2003, pp. 529538.Google Scholar
Verdier, J.-L., Des catégories dérivées des catégories abéliennes, Astérisque vol. 239 [1967], Société Mathématique de France, 1996, pp. xii + 253.Google Scholar
Weibel, C. A., An introduction to homological algebra, Cambridge Studies in Advanced Mathematics vol. 38, Cambridge University Press, Cambridge, 1994.CrossRefGoogle Scholar
Yang, G. and Liu, Z., Cotorsion pairs and model structures on Ch(R), Proc. Edinburgh Math. Soc. (2) vol. 54, no. 3, 2011, pp. 783797.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • References
  • James Gillespie, Ramapo College of New Jersey
  • Book: Abelian Model Category Theory
  • Online publication: 19 December 2024
  • Chapter DOI: https://doi.org/10.1017/9781009449489.018
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • References
  • James Gillespie, Ramapo College of New Jersey
  • Book: Abelian Model Category Theory
  • Online publication: 19 December 2024
  • Chapter DOI: https://doi.org/10.1017/9781009449489.018
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • References
  • James Gillespie, Ramapo College of New Jersey
  • Book: Abelian Model Category Theory
  • Online publication: 19 December 2024
  • Chapter DOI: https://doi.org/10.1017/9781009449489.018
Available formats
×