Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-m6dg7 Total loading time: 0 Render date: 2024-11-09T19:17:23.595Z Has data issue: false hasContentIssue false

6 - Better task analysis, better strategy – machine 4

Published online by Cambridge University Press:  08 October 2009

John R. Josephson
Affiliation:
Ohio State University
Susan G. Josephson
Affiliation:
Ohio State University
Get access

Summary

Abduction machines – summary of progress

All six generations of abduction machines described in this book are attempts to answer the question of how to organize knowledge and control processing to make abductive problem solving computationally feasible. How can an intelligent agent form good composite explanatory hypotheses without getting lost in the large number of potentially applicable concepts and the numerical vastness of their combinations? What general strategies can be used? Furthermore, it is not enough simply to form the best explanation, which already appears to be difficult, but an agent needs to be reasonably sure that the explanation chosen is significantly better than alternative explanations, even though generating all possible explanations so that they can be compared is usually not feasible.

Thus it seems that we are in deep trouble. Logic demands that an explanation be compared with alternatives before it can be confidently accepted, but bounded computational resources make it impossible to generate all of the alternatives. So it seems, tragically, that knowledge is impossible! Yet we are saved after all by a clever trick; and that trick is implicit comparison. A hypothesis is compared with alternatives without explicitly generating them all. One way to do this, as we have seen, is by comparing parts of hypotheses. By comparing hypothesis-part h1 with hypothesis-part h2, all composite hypotheses containing h1 are implicitly compared with all composites containing h2. Another way to implicitly compare hypotheses is to rely on a hypothesis generator that generates hypotheses in approximate order of most plausible first.

Type
Chapter
Information
Abductive Inference
Computation, Philosophy, Technology
, pp. 136 - 156
Publisher: Cambridge University Press
Print publication year: 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×