Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-mlc7c Total loading time: 0 Render date: 2024-11-09T19:24:42.707Z Has data issue: false hasContentIssue false

13 - Controlled Growth of Graphene Crystals by Chemical Vapor Deposition: From Solid Metals to Liquid Metals

from Part I

Published online by Cambridge University Press:  22 June 2017

Phaedon Avouris
Affiliation:
IBM T. J. Watson Research Center, New York
Tony F. Heinz
Affiliation:
Stanford University, California
Tony Low
Affiliation:
University of Minnesota
Get access
Type
Chapter
Information
2D Materials
Properties and Devices
, pp. 238 - 256
Publisher: Cambridge University Press
Print publication year: 2017

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

13.4 References

Novoselov, K. S., Geim, A. K., Morozov, S. V., Jiang, D., Zhang, Y., Dubonos, S. V., Grigorieva, I. V., and Firsov, A. A., Electric field effect in atomically thin carbon films. Science, 306 (2004), 666669.CrossRefGoogle ScholarPubMed
Chen, J. H., Jang, C., Xiao, S., Ishigami, M., and Fuhrer, M. S., Intrinsic and extrinsic performance limits of graphene devices on SiO2. Nat. Nanotechnol. 3 (2008), 206209.Google Scholar
Bolotin, K. I., Sikes, K. J., Jiang, Z., Klim, M., Fudenberg, G., Hone, J., Kim, P., and Stormera, H. L., Ultrahigh electron mobility in suspended graphene. Solid State Commun. 146 (2008), 351355.Google Scholar
Du, X., Skachko, I., Barker, A., and Andrei, E. Y., Approaching ballistic transport in suspended graphene. Nat. Nanotechnol. 3 (2008), 491495.Google Scholar
Du, X., Skachko, I., Duerr, F., Luican, A., and Andrei, E. Y., Fractional quantum Hall effect and insulating phase of Dirac electrons in graphene. Nature 462 (2009), 192195.Google Scholar
Nair, R. R., Blake, P., Grigorenko, A. N., Novoselov, K., Booth, T. J., Stauber, T., Peres, N. M. R., and Geim, A. K., Fine structure constant defines visual transparency of graphene. Science 320 (2008), 1308.CrossRefGoogle ScholarPubMed
Novoselov, K. S., Falko, V. I., Colombo, L., Gellert, P. R., Schwab, M. G., and Kim, K., A roadmap for graphene. Nature 490 (2012), 192200.Google Scholar
Si, Y. C. and Samulski, E. T., Exfoliated graphene separated by platinum nanoparticles. Chem. Mater. 20 (2008), 67926797.CrossRefGoogle Scholar
Blake, P., Brimicombe, P. D., Nair, R. R., Booth, T. J., Jiang, D., Schedin, F., Ponomarenko, L. A., Morozov, S. V., Gleeson, H. F., Hill, E. W., Geim, A. K., and Novoselov, K. S., Graphene-based liquid crystal device. Nano. Lett. 8 (2008), 17041708.Google Scholar
Blake, P., Hill, E. W., Castro Neto, A. H., Novoselov, K. S., Jiang, D., Yang, R., Booth, T. J., and Geim, A. K., Making graphene visible. Appl. Phys. Lett. 91 (2007), 063124.Google Scholar
Huang, Y., Sutter, E., Shi, N. N., Zheng, J. B., Yang, T. Z., Englund, D., Gao, H. J., and Sutter, P., Reliable exfoliation of large-area high-quality flakes of graphene and other two-dimensional materials. ACS Nano 9 (2015), 1061210620.Google Scholar
Berger, C., Song, Z., Li, X., Wu, X., Brown, N., Naud, C., Mayou, D., Li, T., Hass, J., Marchenkov, A. N., Conrad, E. H., First, P. N., and de Heer, W. A., Electronic confinement and coherence in patterned epitaxial graphene. Science 312 (2006), 11911196.CrossRefGoogle ScholarPubMed
Zhou, S. Y., Gweon, G. H., Fedorov, A. V., First, P. N., de Heer, W. A., Lee, D. H., Guinea, F., Castro Neto, A. H., and Lanzara, A., Substrate-induced band gap opening in epitaxial graphene. Nat. Mater. 6 (2007), 770775.Google Scholar
Sprinkle, M., Soukiassian, P., de Heer, W. A., Berger, C., and Conrad, E. H., Epitaxial graphene: the material for graphene electronics. Phys. Status Solidi RRL 3 (2009), A91.CrossRefGoogle Scholar
Wu, X., Hu, Y., Ruan, M., Madiomanana, N. K., Berger, C., and de Heer, W. A., Thermoelectric effect in high mobility single layer epitaxial graphene. Appl. Phys. Lett. 99 (2011), 133102.Google Scholar
Baringhaus, J., Ruan, M., Edler, F., Tejeda, A., Sicot, M., Taleb-Ibrahimi, A., Li, A. P., Jiang, Z., Conrad, E. H., Berger, C., Tegenkamp, C., and de Heer, W. A., Exceptional ballistic transport in epitaxial graphene nanoribbons. Nature 506 (2014), 349354.Google Scholar
Lalmi, B., Oughaddou, H., Enriquez, H., Kara, A., Vizzini, S., Ealet, B., and Aufray, B., Epitaxial growth of a silicene sheet. Appl. Phys. Lett. 97 (2010), 223109.Google Scholar
Vogt, P., Padova, P. D., Quaresima, C., Avila, J., Frantzeskakis, E., Asensio, C. M., Resta, A., Ealet, B., and Lay, G. L., Silicene: compelling experimental evidence for grapheme-like two-dimensional silicon. Phys. Rev. Lett. 108 (2012), 155501.CrossRefGoogle Scholar
Li, L. F., Lu, S. Z., Pan, J. B., Qin, Z. H., Wang, Y. Q., Wang, Y. L., Cao, G. Y., Du, S. Y., and Gao, H. J., Buckled germanene formation on Pt(111). Adv. Mater. 26 (2014), 48204824.Google Scholar
Dávila, M. E., Xian, L., Cahangirov, S., Rubio, A., and Lay, G. L., Germanene: a novel two-dimensional germanium allotrope akin to graphene and silicene. New J. Phys. 16 (2014), 095002.Google Scholar
Zhu, F. F., Chen, W. J., Xu, Y., Gao, C. L., Guan, D. D., Liu, C. H., Qian, D., Zhang, S. C., and Jia, J. F., Epitaxial growth of two-dimensional stanene. Nat. Mater. 14 (2015), 10201025.CrossRefGoogle ScholarPubMed
Stankovich, S., Dikin, D. A., Piner, R. D., Kohlhaas, K. A., Kleinhammes, A., Jia, Y., Wu, Y., Nguyen, S. T., and Ruoff, R. S., Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 45 (2007), 15581565.CrossRefGoogle Scholar
Zhu, Y. W., Murali, S., Cai, W. W., Li, X. S., Suk, J. W., Potts, J. R., and Ruoff, R. S., Graphene and graphene oxide: synthesis, properties, and applications. Adv. Mater. 22 (2010), 39063924.Google Scholar
Dreyer, D. R., Park, S., Bielawski, C. W., and Ruoff, R. S., The chemistry of graphene oxide. Chem. Soc. Rev. 39 (2010), 228240.Google Scholar
Chua, C. K. and Pumera, M., Chemical reduction of graphene oxide: a synthetic chemistry viewpoint. Chem. Soc. Rev. 43 (2014), 291312.Google Scholar
Paton, K. R., Varrla, E., Backes, C., Smith, R. J., Khan, U., Neill, A. O., Boland, C., Lotya, M., Istrate, O. M., King, P., Higgins, T., Barwich, S., May, P., Puczkarski, P., Ahmed, I., Moebius, M., Pettersson, H., Long, E., Coelho, J., O’Brien, S. E., McGuire, E. K., Sanchez, B. M., Duesberg, G. S., McEvoy, N., Pennycook, T. J., Downing, C., Crossley, A., Nicolosi, V., and Coleman, J. N., Scalable production of large quantities of defect-free few-layer graphene by shear exfoliation in liquids. Nat. Mater. 13 (2014), 624630.Google Scholar
Lau, K. K. S., Caulfield, J. A., and Gleason, K. K., Structure and morphology of fluorocarbon films grown by hot filament chemical vapor deposition. Chem. Mater. 12 (2000), 30323037.Google Scholar
Maruyama, T. and Kanagawa, T., Electrochromic properties of niobium oxide thin films prepared by chemical vapor deposition. J. Electrochem. Soc. 141 (1994), 28682871.Google Scholar
Schropp, R. E. I., Stannowski, B., Brockhoff, A.M., van Veenendaal, P. A., and Rath, J. K., Hot wire CVD of heterogeneous and polycrystalline silicon semiconducting thin films for application in thin film transistors and solar cells. Mater. Phys. Mech. 1 (2000), 7382.Google Scholar
Dobkin, D. and Zuraw, M. K., Principles of Chemical Vapor Deposition (Kluwer, 2003).Google Scholar
Xue, Y. Z., Wu, B., Guo, Y. L., Huang, L. P., Jiang, L., Chen, J. Y., Geng, D. C., Liu, Y. Q., Hu, W. P., and Yu, G., Synthesis of large-area, few-layer graphene on iron foil by chemical vapor deposition. Nano Res. 4 (2011), 12081214.Google Scholar
Sutter, E. A., Albrecht, P., and Sutter, P. W., Graphene growth on polycrystalline Ru thin films. Appl. Phys. Lett. 95 (2009), 133109.Google Scholar
Sutter, P. W., Flege, J. I., and Sutter, E. A., Epitaxial graphene on ruthenium. Nat. Mater 7 (2008), 406411.Google Scholar
Ramon, M. E., Gupta, A., Corbet, C., Ferrer, D. A., Movva, H. C. P., Carpenter, G., Colombo, L., Bourianoff, G., Doczy, M., Akinwande, D., Tutuc, E., and Banerjee, S. K., CMOS-compatible synthesis of large-area, high-mobility graphene by chemical vapor deposition of acetylene on cobalt thin films. ACS Nano 5 (2011), 71987204.Google Scholar
Rutkov, E. V., Kuzmichev, A. V., and Gall, N. R., Carbon interaction with rhodium surface: Adsorption, dissolution, segregation, growth of graphene layers. Phys. Solid. State 53 (2011), 10921098.CrossRefGoogle Scholar
Mueller, F., Grandthyll, S., Zeitz, C., Jacobs, K., Huefner, S., Gsell, S., and Schreck, M., Epitaxial growth of graphene on Ir(111) by liquid precursor deposition. Phys. Rev. B 84 (2011), 075472.Google Scholar
Oznuluer, T., Pince, E., Polat, E. O., Balci, O., Salihoglu, O., and Kocabas, C., Synthesis of graphene on gold. Appl. Phys. Lett. 98 (2011), 183101.Google Scholar
Reina, A., Jia, X. T., Ho, J., Nezich, D., Son, H. B., Bulovic, V., Dresselhaus, M. S., and Kong, J., Large-area, few-layer graphene films on arbitrary substrates by chemical vapor deposition. Nano Lett. 9 (2009), 3035.Google Scholar
Kim, K. S., Zhao, Y., Jang, H., Lee, S. Y., Kim, J. M., Kim, K. S., Ahn, J. H., Kim, P., Choi, J. Y., and Hong, B. H., Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature 457 (2009), 706710.Google Scholar
Li, X. S., Cai, W. W., An, J. H., Kim, S., Nah, J., Yang, D. X., Piner, R. D., Velamakanni, A., Jung, I., Tutuc, E., Banerjee, S. K., Colombo, L., and Ruoff, R. S., Large-area synthesis of high-quality and uniform graphene films on copper foils. Science 324 (2009), 13121314.Google Scholar
Chen, S., Cai, W., Piner, R. D., Suk, J. W., Wu, Y., Ren, Y., Kang, J., and Ruoff, R. S., Synthesis and characterization of large-area graphene and graphite films on commercial Cu-Ni alloy foils. Nano Lett. 11 (2011), 35193525.Google Scholar
Yu, Q. K., Jauregui, L. A., Wu, W., Colby, R., Tian, J. F., Su, Z. H., Cao, H. L., Liu, Z. H., Pandey, D., Wei, D. G., Chung, T. F., Peng, P., Guisinger, N. P., Stach, E. A., Bao, J. M., Pei, S. S., and Chen, Y. P., Control and characterization of individual grains and grain boundaries in graphene grown by chemical vapour deposition. Nat. Mater. 10 (2011), 443449.Google Scholar
Yan, Z., Lin, J., Peng, Z., Sun, Z. H., Zhu, Y., Li, L., Xiang, Ch., Lo Samuel, E., Kittrell, C., and Tour, J. M., Toward the synthesis of wafer-scale single-crystal graphene on copper foils. ACS Nano 6 (2012), 91109117.Google Scholar
Gao, L., Ren, W., Xu, H., Jin, L., Wang, Zh., Ma, T., Ma, L. P., Zhang, Z., Fu, Q., Peng, L. M., Bao, X., and Cheng, H. M., Repeated growth and bubbling transfer of graphene with millimetre-size single-crystal grains using platinum. Nat. Commun. 3 (2012), e699.Google Scholar
Zhou, H., Yu, W. J., Liu, L., Cheng, R., Chen, Y., Huang, X., Liu, Y., Wang, Y., Huang, Y., and Duan, X., Chemical vapour deposition growth of large single crystals of monolayer and bilayer graphene. Nat. Commun. 4 (2013), e2096.Google Scholar
Gan, L. and Luo, Z., Turning off hydrogen to realize seeded growth of sub-centimeter single-crystal graphene grains on copper. ACS Nano 7 (2013), 94809488.Google Scholar
Han, G. H., Günes, F., Bae, J. J., Kim, E. S., Chae, S. J., Shin, H. J., Choi, J. Y., Pribat, D., and Lee, Y. H., Influence of copper morphology in forming nucleation seeds for graphene growth. Nano Lett. 11 (2011), 41444148.Google Scholar
Wu, T. R., Zhang, X. F., Yuan, Q. H., Xue, J. C., Lu, G. Y., Liu, Z. H., Wang, H. S., Wang, H. M., Ding, F., Yu, Q. K., Xie, X. M., and Jiang, M. H., Fast growth of inch-sized single-crystalline graphene from a controlled single nucleus on Cu–Ni alloys. Nat. Mater. 15 (2016), 4347.Google Scholar
Lee, J. H., Lee, E. K., Joo, W. J., Jang, Y., Kim, B. S., Lim, J. Y., Choi, S. H., Ahn, S. J., Ahn, J. R., Park, M. H., Yang, C. W., Choi, B. L., Hwang, S. W., and Whang, D., Wafer-scale growth of single-crystal monolayer graphene on reusable hydrogen-terminated germanium. Science 344 (2014), 286289.Google Scholar
Lin, L., Li, J. Y., Ren, H. Y., Koh, A. L., Kang, N., Peng, H. L., Xu, H. Q., and Liu, Z. F., Surface engineering of copper foils for growing centimeter-sized single-crystalline graphene. ACS Nano 10 (2016), DOI: 10.1021/acsnano.6b00041.CrossRefGoogle ScholarPubMed
Hao, Y., Bharathi, M. S., Wang, L., Liu, Y., Chen, H., Nie, S., Wang, X., Chou, H., Tan, C., Fallahazad, B., Ramanarayan, H., Magnuson, C. W., Tutuc, E., Yakobson, B. I., McCarty, K. F., Zhang, Y. W., Kim, P., Hone, J., Colombo, L., and Ruoff, R. S., The role of surface oxygen in the growth of large single-crystal graphene on copper. Science 342 (2013), 720723.Google Scholar
Eres, G., Regmi, M., Rouleau, C. M., Chen, J. H., Ivanov, I. N., Puretzky, A. A., and Geohegan, D. B.. Cooperative island growth of large-area single-crystal graphene on copper using chemical vapor deposition. ACS Nano 8 (2014), 56575669.Google Scholar
Nguyen, V. L., Shin, B. G., Duong, D. L., Kim, S. T., Perello, D., Lim, Y. J., Yuan, Q. H., Ding, F., Jeong, H. Y., Shin, H. S., Lee, S. M., Chae, S. H., Vu, Q. A., Lee, S. H., and Lee, Y. H., Seamless stitching of graphene domains on polished copper (111) foil. Adv. Mater. 27 (2015), 13761382.Google Scholar
Verguts, K., Vermeulen, B., Vrancken, N., Schouteden, K., Van Haesendonck, C., Huyghebaert, C., Heyns, M., De Gendt, S., and Brems, S.. Epitaxial Al2O3(0001)/Cu(111) template development for CVD graphene growth. J. Phys. Chem. C 120 (2016), 297304.Google Scholar
Nai, C. T., Xu, H., Tan, S. J. R., and Loh, K. P.. Analyzing Dirac cone and phonon dispersion in highly oriented nanocrystalline graphene. ACS Nano 10 (2016), 16811689.Google Scholar
Robertson, A. W. and Warner, J. H, Hexagonal single crystal domains of few-layer graphene on copper foils. Nano Lett 11 (2011), 11821189.Google Scholar
Wu, B., Geng, D. C., Guo, Y. L., Huang, L. P., Xue, Y. Z., Zheng, J., Chen, J. Y., Yu, G., Liu, Y. Q., Jiang, L., and Hu, W. P., Equiangular hexagon-shape-controlled synthesis of graphene on copper surface. Adv. Mater. 23 (2011), 35223525.CrossRefGoogle ScholarPubMed
Liu, J. W., Wu, J., Edwards, C. M., Berrie, C. L., Moore, D., Chen, Z. J., Maroni, V. A., Paranthaman, M. P., and Goyal, A., Triangular graphene grain growth on cube-textured Cu substrates. Adv. Funct. Mater. 21 (2011), 38683874.Google Scholar
Geng, D. C., Wu, B., Guo, Y. L., Huang, L. P., Xue, Y. Z., Chen, J. Y., Yu, G., Jiang, L., Hu, W. P., and Liu, Y. Q., Uniform hexagonal graphene flakes and films grown on liquid copper surface. Proc. Natl. Acad. Sci. U.S.A. 109 (2012), 79927996.Google Scholar
Geng, D. C., Luo, B. R., Xu, J., Guo, Y. L., Wu, B., Hu, W. P., Liu, Y. Q., and Yu, G., Self-aligned single-crystal graphene grains. Adv. Funct. Mater. 24 (2014), 16641670.Google Scholar
Wu, Y. A., Fan, Y., Speller, S., Creeth, G. L., Sadowski, J. T., He, K., Robertson, A. W., Allen, C. S., and Warner, J. H., Large single crystals of graphene on melted copper using chemical vapor deposition. ACS Nano 6 (2012), 50105017.Google Scholar
Mohsin, A., Liu, L., Liu, P. Z., Deng, W., Ivanov, I. N., Li, G. L., Dyck, O. E., Duscher, G., Dunlap, J. R., Xiao, K., and Gu, G., Synthesis of millimeter-size hexagon-shaped graphene single crystals on resolidified copper. ACS Nano 7 (2013), 89248931.Google Scholar
Wu, B., Geng, D. C., Xu, Z. P., Guo, Y. L., Huang, L. P., Xue, Y. Z., Chen, J. Y., Yu, G., and Liu, Y. Q., Self-organized graphene crystal patterns. NPG Asia Mater. 5 (2013), e36.Google Scholar
Ding, G. Q., Zhu, Y., Wang, S. M., Gong, Q., Sun, L., Wu, T. R., Xie, X. M., and Jiang, M. H., Chemical vapor deposition of graphene on liquid metal catalysts. Carbon 53 (2013), 321326.Google Scholar
Wang, J., Zeng, M. Q., Tan, L. F., Dai, B. E., Deng, Y., Rümmeli, M., Xu, H. T., Li, Z. S., Wang, S., Peng, L. M., Eckert, J., and Fu, L., High-mobility graphene on liquid p-block elements by ultra-low-loss CVD growth. Sci. Rep. 3 (2013), e2670.Google Scholar
Gao, L. B., Ni, G. X., Liu, Y. P., Liu, B., Castro, N. A. H., and Loh, K. P.. Face-to-face transfer of wafer-scale graphene films. Nature 505 (2014), 190194.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×