Skip to main content Accessibility help
×
  • Cited by 19
Publisher:
Cambridge University Press
Online publication date:
March 2013
Print publication year:
2013
Online ISBN:
9781139565769

Book description

A First Course in Computational Algebraic Geometry is designed for young students with some background in algebra who wish to perform their first experiments in computational geometry. Originating from a course taught at the African Institute for Mathematical Sciences, the book gives a compact presentation of the basic theory, with particular emphasis on explicit computational examples using the freely available computer algebra system, Singular. Readers will quickly gain the confidence to begin performing their own experiments.

Reviews

'Decker and Pfister exposit the very rudiments of algebraic geometry in tandem with the workings of the program Singular. The student who masters this content could proceed in many directions … Recommended. Upper-division undergraduates through researchers/faculty.'

D. V. Feldman Source: Choice

Refine List

Actions for selected content:

Select all | Deselect all
  • View selected items
  • Export citations
  • Download PDF (zip)
  • Save to Kindle
  • Save to Dropbox
  • Save to Google Drive

Save Search

You can save your searches here and later view and run them again in "My saved searches".

Please provide a title, maximum of 40 characters.
×

Contents

Bibliography
Appel, K.; Haken, W.: The solution of the four-color map problem. Sci. Amer. 237, 108–121 (1977).
Aubry, Y.; Perret, M.: A Weil theorem for singular curves. In Arithmetic, Geometry and Coding Theory. Pellikaan, R., Perret, M. and Vladut, S. G. (eds), 1–7. Gruyter, De (1996).
Bandman, T.; Greuel, G.-M.; Grunewald, F.; Kunyavskii, B.; Pfister, G.; Plotkin, E.: Identities for finite solvable groups and equations in finite simple groups. Compositio Math. 142, 734–764 (2006).
Bierstone, E.; Milman, P.: Canonical desingularization in characteristic zero by blowing up the maximum strata of a local invariant. Invent. Math. 128, 207–302 (1997).
Birch, B.; Swinnerton-Dyer, H.: Notes on elliptic curves II. Journ. Reine u. Angewandte Math. 218, 79–108 (1965).
Bravo, A.; Encinas, S.; Villamayor, O.: A simplified proof of desingularisation and applications. Rev. Math. Iberoamericana 21, 349–458 (2005).
Buchberger, B.: Ein Algorithmus zum Auffinden der Basiselemente des Restklassenringes nach einem nulldimensionalen Polynomideal. PhD Thesis, University of Innsbruck, Austria (1965).
Cox, D.; Little, J.; O’Shea, D.: Ideals, Varieties and Algorithms, 3rd ed. Springer (2007).
Cox, D.; Little, J.; O’Shea, D.: Using Algebraic Geometry, 2nd ed. Springer (2005).
Decker, W.; Lossen, Chr.: Computing in Algebraic Geometry: A quick start using Singular. Springer (2006).
Decker, W.; Greuel, G.-M.; Pfister, P.: Primary decomposition: algorithms and comparisons. In Algorithmic Algebra and Number Theory, Gert-Martin, Greuel, Matzat, B. H., Hiss, G. (eds), 187–220. Springer (1998).
Decker, W.; Greuel, G.-M.; de Jong, T.; Pfister, G.: The normalization: a new algorithm, implementation and comparisons. In Computational Methods for Representations of Groups and Algebras, Dräxler, P., Michler, G., Ringel, C. M. (eds), 177–185. Birkhäauser (1999).
Decker, W.; Greuel, G.-M.; Pfister, G.; Schönemann, H.: Singular 3-1-5. A computer algebra system for polynomial computations. for Computer Algebra, University of Kaiserslautern, (2012).
Decker, W.; Schreyer, F. O.: Varieties, Gröbner Bases, and Algebraic Curves. To appear.
Dickenstein, A.; Emiris, I. Z. (editors): Solving Polynomial Equations: Foundations, Algorithms, and Applications. Algorithms and Computations in Mathematics 41, Springer (2005).
Doerk, K.; Hawkes, T.: Finite Soluble Groups. De Gruyter Expositions in Mathematics 4, Berlin (1992)
Eisenbud, D.; Grayson, D.; Stillman, M., Sturmfels, B.: Computations in Algebraic Geometry with Macaulay2. Springer (2001).
Faugère, J. C.; Gianni, P.; Lazard, D.; Mora, T.: Efficient computation of zero-dimensional Gröbner bases by change of ordering. Journal of Symbolic Computation 16, 329–344 (1993).
Feit, Walter; Thompson, John G.: Solvability of groups of odd order. Pacific Journal of Mathematics 13, 775–1029 (1963).
Frühbis-Krüger, A.; Pfister, G.: Algorithmic resolution of singularities. In Singularities and Computer Algebra, Lossen, C., Pfister, G. (eds). LMS Lecture Notes 324, 157–184. Cambridge University Press (2006).
Gianni, P.; Trager, B.; Zacharias, G.: Gröbner bases and primary decomposition of polynomial ideals. Journal of Symbolic Computation 6, 149–167 (1988).
Gordan, P.: Neuer Beweis des Hilbertschen Satzesüber homogene Funktionen. Nachrichten König. Ges. der Wiss. zu Gött., 240–242 (1899).
Grauert, H.: Über die Deformation isolierter Singularitäten analytischer Mengen. Invent. Math. 15, 171–198, (1972).
Greuel, G.-M.; Pfister, G.: Gröbner Bases and Algebraic Geometry. In Gröbner Bases and ApplicationsBuchberger, B. and Winkler, F. (eds). LMS Lecture Notes 251, 109–143. Cambridge University Press (1998).
Greuel, G.-M.; Pfister, G.: Computer algebra and finite groups. In Proc. of the ICM Beijing, 4–14 (2002).
Greuel, G.-M.; Pfister, G.: Singular and Applications. JJahresbericht der DMV 108 (4), 167–196 (2006).
Greuel, G.-M.; Pfister, G.: A Singular Introduction to Commutative Algebra. Second Edition. Springer (2007).
Gröbner, W.: Über die algebraischen Eigenschaften der Integrale von linearen Differentialgleichungen mit konstanten Koeffizienten. Monatsh. der Mathematik 47, 247–284, (1939).
Hilbert, D.: Über die Theorie der algebraischen Formen. Math. Ann. 36, 473–534 (1890).
Hironaka, H.: Resolution of singularities of an algebraic variety over a field of characteristic zero, Ann. Math. 79, 109–326 (1964).
Kemper, G.: Morphisms and constructible sets: Making two theorems of Chevalley constructive. Preprint (2007).
Kreuzer, M.; Robbiano, L.: Computational Commutative Algebra 1. Springer (2000).
Koblitz, N.: Elliptic curve cryptosystems. Mathematics of Computation 48, 203–209 (1987).
Labs, O.: A septic with 99 real nodes. Rend. Sem. Mat. Univ. Pad. 116, 299–313 (2006).
Lenstra, Jr., H. W.: Factoring integers with elliptic curves. Ann. Math. 2 (126), 649–673 (1987).
Macaulay, F. S.: Some properties of enumeration in the theory of modular systems. Proc. London Math. Soc. 26, 531–555, (1939).
Miller, V.: Use of elliptic curves in cryptography. In Advances in cryptology–-CRYPTO 85, Williams, Hugh C. (ed), Lecture Notes in Computer Science, 218, 417–426, Springer (1985).
Silvermann, Joseph H.: The Arithmetic of Elliptic Curves. Springer (2009).
Thompson, J.: Non-solvable finite groups all of whose local subgroups are solvable. Bull. Amer. Math. Soc. 74, 383–437 (1968).
Vasconcelos, W. V.: Computational Methods in Commutative Algebra and Algebraic Geometry. Springer (1998).
Wild, Marcel: The groups of order sixteen made easy. American Mathematical Monthly 112, (1) 20–31 (2005).
Wiles, A.: Modular elliptic curves and Fermat’s last theorem. Ann. Math 141, 443–551 (1995).
Zorn, M.: Nilpotency of finite groups. Bull. Amer. Math. Soc. 42, 485–486 (1936).

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Book summary page views

Total views: 0 *
Loading metrics...

* Views captured on Cambridge Core between #date#. This data will be updated every 24 hours.

Usage data cannot currently be displayed.