We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure [email protected]
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Optical coherence tomography (OCT) and confocal microscopy are pivotal in retinal imaging, offering distinct advantages and limitations. In vivo OCT offers rapid, noninvasive imaging but can suffer from clarity issues and motion artifacts, while ex vivo confocal microscopy, providing high-resolution, cellular-detailed color images, is invasive and raises ethical concerns. To bridge the benefits of both modalities, we propose a novel framework based on unsupervised 3D CycleGAN for translating unpaired in vivo OCT to ex vivo confocal microscopy images. This marks the first attempt to exploit the inherent 3D information of OCT and translate it into the rich, detailed color domain of confocal microscopy. We also introduce a unique dataset, OCT2Confocal, comprising mouse OCT and confocal retinal images, facilitating the development of and establishing a benchmark for cross-modal image translation research. Our model has been evaluated both quantitatively and qualitatively, achieving Fréchet inception distance (FID) scores of 0.766 and Kernel Inception Distance (KID) scores as low as 0.153, and leading subjective mean opinion scores (MOS). Our model demonstrated superior image fidelity and quality with limited data over existing methods. Our approach effectively synthesizes color information from 3D confocal images, closely approximating target outcomes and suggesting enhanced potential for diagnostic and monitoring applications in ophthalmology.
Experimental chapter that presents experimental devices that allow us to detect individual quantum systems and observe quantum jumps occurring at random times. Described: superconducting single photon detectors, detection of arrays of ions and atoms, the shelving technique that allows us to measure the quantum state of the single atom, state selective field ionization of single Rydberg atoms, detection of single molecules on a surface by confocal microscopy, articial atoms in circuit quantum electrodynamics (cQED)
Most gyrodactylids have a haptor armed with a pair of hamuli, two connecting bars and 16 marginal hooks. In some gyrodactylids, however, the haptor is disc-shaped and reinforced by additional sclerites. The genus Polyclithrum has arguably the most elaborate haptor in this group. This study aimed to gain better understanding of the anatomy of Polyclithrum by examining neuromusculature and haptoral armament of Polyclithrum ponticum, a species parasitizing Mugil cephalus in the Black Sea, with emphasis on haptoral sclerites and musculature in connection with host-attachment mechanisms. Musculature was stained by phalloidin, the nervous system by anti-serotonin and anti-FMRFamide antibodies, and haptoral sclerites were visualized in reflected light. The study provided new information on sclerites: in addition to previously described supplementary sclerites (A1–6), ear-shaped sclerites (ESSs) and two paired groups of ribs, reflected light revealed a rod-shaped process on the ESSs and a pair of small posterior sclerites. The sclerites were shown to be operated by 16 muscles, the most prominent of which were two transverse muscles connecting the hamular roots, three muscles attached to sclerite A2, the muscle fibres of anterior ribs and a set of extrinsic muscles. The nervous system consists of a pair of cerebral ganglia connected by a commissure and three pairs of nerve cords that unite in the haptor to form a loop between the opposite cords. The arrangement of sclerites and muscles suggests that Polyclithrum initiates the attachment by clamping a host's surface with longitudinally folded haptor and then secures its position with marginal hooks.
The microstructure of colloidal suspensions, both at rest and under flow, is a function of the particle and fluid properties, interparticle potential, and processing or flow history. Indeed, complex, nonlinear rheological phenomena, such as thixotropy and shear thickening, are associated with significant changes in microstructure during flow and processing. A modern understanding of colloidal suspension rheology thus necessitates measurement of colloidal suspension microstructure under flow as well as at rest. Two popular classes of experimental methods for microstructure measurement are introduced and explained, namely confocal microscopy and scattering of light, neutrons, and x-rays.
The ability to accurately and precisely measure the thickness of biomaterial constructs is critical for characterizing both specific dimensional features and related mechanical properties. However, in the absence of a standardized approach for thickness measurements, a variety of imaging modalities have been employed, which have been associated with varying limits of accuracy, particularly for ultrathin hydrated structures. Electron microscopy (EM), a commonly used modality, yields thickness values for extensively processed and nonhydrated constructs, potentially resulting in overestimated mechanical properties, including elastic modulus and ultimate tensile strength. Confocal laser scanning microscopy (CLSM) has often been used as a nondestructive imaging alternative. However, published CLSM-derived image analysis protocols use arbitrary signal intensity cutoffs and provide minimal information regarding thickness variability across imaged surfaces. To address the aforementioned limitations, we present a standardized, user-independent CLSM image acquisition and analysis approach developed as a custom ImageJ macro and validated with collagen-based scaffolds. In the process, we also quantify thickness discrepancies in collagen-based scaffolds between CLSM and EM techniques, further illustrating the need for improved strategies. Employing the same image acquisition protocol, we also demonstrate that this approach can be used to estimate the surface roughness of the same scaffolds without the use of specialized instrumentation.
Breast cancer (BC) is one of the most prevalent forms of cancer in women worldwide. Clinical research indicates that BC patients are at an increased risk for thrombotic events, drastically decreasing their quality-of-life and treatment outcomes. There is ample evidence of this in the literature, but it is mainly focused on metastatic BC. Therefore, coagulopathies of nonmetastatic BC are understudied and require in-depth investigation. In this study, clot kinetics and ultrastructure were used to investigate treatment-naïve, nonmetastatic BC patients using scanning electron microscopy, Thromboelastography®, and confocal laser scanning microscopy. It was demonstrated that nonmetastatic BC patients exhibit minimal ultrastructural alterations of the clot components and no changes in the clot kinetics. However, BC patients presented changes to fibrinogen protein structure, compared to matched controls, using an amyloid-selective stain. Together, these findings suggest that coagulation dysfunction(s) in BC patients with early disease manifest at the microlevel, rather than the macrolevel. This study presents novel insights to a method that are more sensitive to coagulation changes in this specific patient group, emphasizing that the coagulation system may react in different forms to the disease, depending on the progression of the disease itself.
Constitutive heterochromatin typically exhibits low gene density and is commonly found adjacent or close to the nuclear periphery, in contrast to transcriptionally active genes concentrated in the innermost nuclear region. In Triatoma infestans cells, conspicuous constitutive heterochromatin forms deeply stained structures named chromocenters. However, to the best of our knowledge, no information exists regarding whether these chromocenters acquire a precise topology in the cell nuclei or whether their 18S rDNA, which is important for ribosome function, faces the nuclear center preferentially. In this work, the spatial distribution of fluorescent Feulgen-stained chromocenters and the distribution of their 18S rDNA was analyzed in Malpighian tubule cells of T. infestans using confocal microscopy. The chromocenters were shown to be spatially positioned relatively close to the nuclear periphery, though not adjacent to it. The variable distance between the chromocenters and the nuclear periphery suggests mobility of these bodies within the cell nuclei. The distribution of 18S rDNA at the edge of the chromocenters was not found to face the nuclear interior exclusively. Because the genome regions containing 18S rDNA in the chromocenters also face the nuclear periphery, the proximity of the chromocenters to this nuclear region is not assumed to be associated with overall gene silencing.
Here, we describe a method of acquisition of fast fluorescent signals with the help of the laser scanning confocal microscope (LSCM). Our method permits an increase in the temporal resolution of acquired signals. The method is based on LSCM recordings of fast fluorescent signals with the shortest achievable time sweep, which are performed with the help of a proprietary algorithm. A series of recordings is made in multiple steps; at each step, the fluorescent signal is incremented by a time interval smaller than the time sweep of the frame of LSCM. The size of the increment determines the achievable time resolution. The convolution of the recorded images results in a signal with the temporal resolution determined by the chosen time increment. This method was applied to register the change in fluorescence (calcium transient) of calcium dye preloaded into peripheral nerve endings by electrical stimulation of the motor nerve. Calculated parameters of the calcium transient were identical to the parameters obtained earlier with the help of a high-speed camera and photodiode. We conclude that the method described here can be applied for the registration of fast fluorescent signals by LSCM with a high spatial and temporal resolution.
Eurytrema coelomaticum is a digenean flatworm of ruminants that is the causative agent of eurytrematosis, a disease of veterinary health concern. Although modern techniques of morphological analysis have provided new insights about the morphology and anatomy of parasitic helminths, most studies on E. coelomaticum adults are based on conventional light microscopy. In the present study, a combined approach using brightfield, fluorescence, confocal and scanning electron microscopies (SEMs), together with the cryofracture technique, have updated morphological data on E. coelomaticum recovered from cattle in Rio de Janeiro State, Brazil. Light microscopy confirmed the presence of several structures present in the current description, such as suckers, pharynx, oesophagus, intestinal bifurcation and the cirrus-sac. Fluorescence stereomicroscopy revealed for the first time the cubic crystal protein inclusions in the forebody, which were further detailed by confocal and SEMs. Confocal microscopy provided detailed information of the muscular architecture associated with the attachment structures (suckers), digestive system (pharynx and oesophagus), egg-forming complex (ovary, Mehlis’ gland and Laurer's canal) and male reproductive system, which are similar to those found in other digenean flukes. SEM images of cryofractured parasites showed mucus and developing eggs within uterine loops. It was demonstrated that the combination of advanced tools generated complementary information, confirming the importance of experimental morphology in parasitology. Therefore, the knowledge of the adult structural organization of E. coelomaticum was improved and this work has contributed to propose new morphological criteria to evaluate the effects of antiparasitic drugs on flukes of medical and veterinary importance.
Spheroids—three-dimensional aggregates of cells grown from a cancer cell line—represent a model of living tissue for chemotherapy investigation. Distribution of chemotherapeutics in spheroid sections was determined using the matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI MSI). Proliferating or apoptotic cells were immunohistochemically labeled and visualized by laser scanning confocal fluorescence microscopy (LSCM). Drug efficacy was evaluated by comparing coregistered MALDI MSI and LSCM data of drug-treated spheroids with LSCM only data of untreated control spheroids. We developed a fiducial-based workflow for coregistration of low-resolution MALDI MS with high-resolution LSCM images. To allow comparison of drug and cell distribution between the drug-treated and untreated spheroids of different shapes or diameters, we introduced a common diffusion-related coordinate, the distance from the spheroid boundary. In a procedure referred to as “peeling”, we correlated average drug distribution at a certain distance with the average reduction in the affected cells between the untreated and the treated spheroids. This novel approach makes it possible to differentiate between peripheral cells that died due to therapy and the innermost cells which died naturally. Two novel algorithms—for MALDI MS image denoising and for weighting of MALDI MSI and LSCM data by the presence of cell nuclei—are also presented.
Collagen microstructure is closely related to the mechanical properties of tissues and affects cell migration through the extracellular matrix. To study these structures, three-dimensional (3D) in vitro collagen-based gels are often used, attempting to mimic the natural environment of cells. Some key parameters of the microstructure of these gels are fiber orientation, fiber length, or pore size, which define the mechanical properties of the network and therefore condition cell behavior. In the present study, an automated tool to reconstruct 3D collagen networks is used to extract the aforementioned parameters of gels of different collagen concentration and determine how their microstructure is affected by the presence of cells. Two different experiments are presented to test the functionality of the method: first, collagen gels are embedded within a microfluidic device and collagen fibers are imaged by using confocal fluorescence microscopy; second, collagen gels are directly polymerized in a cell culture dish and collagen fibers are imaged by confocal reflection microscopy. Finally, we investigate and compare the collagen microstructure far from and in the vicinities of MDA-MB 23 cells, finding that cell activity during migration was able to strongly modify the orientation of the collagen fibers and the porosity-related values.
There is increased interest in the use of cellulose nanomaterials for the mechanical reinforcement of composites due to their high stiffness and strength. However, challenges remain in accurately determining their distribution within composite microstructures. We report the use of a range of techniques used to image aggregates of cellulose nanocrystals (CNCs) greater than 10 µm2 within a model thermoplastic polymer. While Raman imaging accurately determines CNC aggregate size, it requires extended periods of analysis and the limited observable area results in poor reproducibility. In contrast, staining the CNCs with a fluorophore enables rapid acquisition with high reproducibility, but overestimates the aggregate size as CNC content increases. Multi-channel spectral confocal laser scanning microscopy is presented as an alternative technique that combines the accuracy of Raman imaging with the speed and reproducibility of conventional confocal laser scanning microscopy, enabling the rapid determination of CNC aggregate distribution within composites.
Aggregation of colloidal clay particles (Na-montmorillonite) by CaCl2 and anionic polysaccharide (succinoglycan) in turbulent conditions was investigated using time-resolved size measurements by laser diffraction on diluted (50 mg l –1) and stirred suspensions. Excess of Ca2+ ions promotes coagulation of the clay, reducing interparticle repulsions, and allows adsorption of succinoglycan, inducing bridging flocculation. Growth/breakage cycles, characteristic of the turbulent conditions, cause the macromolecules to be incorporated in the innermost of the flocs, where the morphological units are shown by confocal microscopy to be the micrometric Ca-clay particles. Such incorporation results in an increased floc tensile strength, depending on the amount of macromolecules adsorbed, with a maximum at polysaccharide concentrations of 2 wt.% with respect to clay mass.
Analysis and processing of electronic images generated using confocal scanning laser microscopy (CSLM) provide a new means of counting and determining the angular distribution of fission tracks in crystalline solids. Using image analysis techniques, large numbers of fission tracks in external mica detectors can be counted rapidly, while measurement of aspect ratio and area of a track entry hole at its intersection with a surface can provide a means of assessing the angle of inclination of individual tracks within minerals and plastics. CSLM imaging, combined with image processing, offers a new and powerful way of probing the surfaces and interiors of crystalline materials. The techniques might also prove useful in the study of fluid inclusions and chemical zoning patterns in minerals.
Bryophytes are usually taken as good bioindicators. However, they represent a large group of terrestrial plants and they express an enormous range of peculiarities within the plant kingdom. With the aim to search for a common pattern of zinc binding, we established axenical in vitro cultures of a dozen bryophyte species that include hornworts, thallose, and leafy liverworts, as well as acrocarp and pleurocarp mosses. The species were grown free of contaminants for many years prior to the application of different treatments, i.e. offering Zn(II) from solid and liquid media and in combination with different anions. The localization and binding of zinc was detected by confocal microscopy using the zinc-specific dye FluoZin™-3. In one of the species, Hypnum cupressiforme (which is widely used for atmospheric heavy metal deposition studies in biomonitoring), semi-quantitative analyses of zinc were performed by energy dispersive X-ray microspectrometry (EDX) in a scanning electron microscope. The results suggest no common pattern of Zn(II) binding in different bryophyte species. Instead, the binding pattern seems to be species specific. Zinc is located in certain areas or cellular compartments, as clearly shown by the EDX measurements in H. cupressiforme.
Confocal microscopy was used to image stages of equine zygote development, at timed intervals, after intracytoplasmic sperm injection (ICSI) of oocytes that were matured in vivo or in vitro. After fixation for 4, 6, 8, 12, or 16 h after ICSI, zygotes were incubated with α/β tubulin antibodies and human anticentromere antibody (CREST/ACA), washed, incubated in secondary antibodies, conjugated to either Alexa 488 or Alexa 647, and incubated with 561-Phalloidin and Hoechst 33258. An Olympus IX81 spinning disk confocal microscope was used for imaging. Data were analyzed using χ2 and Fisher’s exact tests. Minor differences in developmental phases were observed for oocytes matured in vivo or in vitro. Oocytes formed pronuclei earlier when matured in vivo (67% at 6 h and 80% at 8 h) than in vitro (13% at 6 and 8 h); 80% of oocytes matured in vitro formed pronuclei by 12 h. More (p=0.04) zygotes had atypical phenotypes, indicative of a failure of normal zygote development, when oocyte maturation occurred in vitro versus in vivo (30 and 11%, respectively). Some potential zygotes from oocytes matured in vivo had normal phenotypes, although development appeared to be delayed or arrested. Confocal microscopy provided a feasible method to assess equine zygote development using limited samples.
The Myxozoa demonstrate extensive morphological simplification and miniaturization relative to their free-living cnidarian ancestors. This is particularly pronounced in the highly derived myxosporeans, which develop as plasmodia and pseudoplasmodia. To date, motility in these stages has been linked with membrane deformation (e.g. as pseudopodia and mobile folds). Here we illustrate a motile, elongate plasmodium that undergoes coordinated undulatory locomotion, revealing remarkable convergence to a functional worm at the cellular level. Ultrastructural and confocal analyses of these plasmodia identify a highly differentiated external layer containing an actin-rich network, long tubular mitochondria, abundant microtubules, a secreted glycocalyx layer, and an internal region where sporogony occurs and which contains homogeneously distributed granular/fibrillar material. We consider how some of these features may support motility. We also describe the species based on spore morphology and SSU rDNA sequence data, undertake molecular phylogenetic analysis to place it within an early-diverging clade of the ceratomyxids, and evaluate the resultant implications for classification (validity of the genus Meglitschia) and for inferring early host environments (freshwater) of ceratomyxids.
Photosynthesis research employs several biophysical methods, including the detection of fluorescence. Even though fluorescence is a key method to detect photosynthetic efficiency, it has not been applied/adapted to single-cell confocal microscopy measurements to examine photosynthetic microorganisms. Experiments with photosynthetic cells may require automation to perform a large number of measurements with different parameters, especially concerning light conditions. However, commercial microscopes support custom protocols (through Time Controller offered by Olympus or Experiment Designer offered by Zeiss) that are often unable to provide special set-ups and connection to external devices (e.g., for irradiation). Our new system combining an Arduino microcontroller with the Cell⊕Finder software was developed for controlling Olympus FV1000 and FV1200 confocal microscopes and the attached hardware modules. Our software/hardware solution offers (1) a text file-based macro language to control the imaging functions of the microscope; (2) programmable control of several external hardware devices (light sources, thermal controllers, actuators) during imaging via the Arduino microcontroller; (3) the Cell⊕Finder software with ergonomic user environment, a fast selection method for the biologically important cells and precise positioning feature that reduces unwanted bleaching of the cells by the scanning laser. Cell⊕Finder can be downloaded from http://www.alga.cz/cellfinder. The system was applied to study changes in fluorescence intensity in Synechocystis sp. PCC6803 cells under long-term illumination. Thus, we were able to describe the kinetics of phycobilisome decoupling. Microscopy data showed that phycobilisome decoupling appears slowly after long-term (>1 h) exposure to high light.
Millipedes are ecologically important soil organisms and may also be an economically threatening species in rural and urban areas when population outbreaks occur. In order to control infestations commercial formulations of deltamethrin have been commonly applied, even though there are few studies about the effects of such insecticide on millipedes. This paper describes the effects of this insecticide on millipedes showing neurotoxic effects assessed by synapsin labeling and confocal microscopy. Deltamethrin concentrations related to the DL50 of the active ingredient and a field concentration were applied topically in the diplopod Gymnostreptus olivaceus to evaluate the behavior, mortality rate, and synapsin levels in the brain 12, 24, and 48h after contact with deltamethin. The insecticide caused mortality at the higher concentrations employed, in which no change was observed in neurotransmission in the survivors. In contrast, at field concentrations, deltamethrin did not cause any deaths, but triggered significant changes in synapsin levels. The results obtained form the synapsin labeling provide several interpretations suggesting that the isolated application of this tool must be associated with additional tools in order to evaluate biologically induced effects of deltamethrin in an accurate way. In addition, the feasibility of chemical control of millipedes with deltamethrin is questioned.
The purpose of this study was to investigate micro-morphology of the resin-dentin inter-diffusion zone using two different single-bottle self-etching dentin adhesives with and without previous acid-etching, after in vitro mechanical loading stimuli. Extracted human third molars were sectioned to obtain dentin surfaces. Two different single-bottle self-etching dentin adhesives, Futurabond U and Experimental both from VOCO, were applied following the manufacturer’s instructions or after 37% phosphoric acid application. Resin-dentin interfaces were analyzed with dye assisted confocal microscopy evaluation (CLSM), including the calcium-chelation technique, xylenol orange (CLSM-XO). CLSM revealed that resin-dentin interfaces of unloaded specimens were deficiently resin-hybridized, in general. These samples showed a Rhodamine B-labeled hybrid complex and adhesive layer completely affected by fluorescein penetration (nanoleakage) through the porous resin-dentin interface, but thicker after PA-etching. Load cycling promoted an improved sealing of the resin-dentin interface at dentin, a decrease of the hybrid complex porosity, and an increment of dentin mineralization. Load cycled specimens treated with the XO technique produced a clearly outlined fluorescence due to consistent Ca-mineral deposits within the bonding interface and inside the dentinal tubules, especially when the experimental adhesive was applied.