We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure [email protected]
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
In a recent breakthrough, Dimitrov [Dim] solved the Schinzel–Zassenhaus conjecture. We follow his approach and adapt it to certain dynamical systems arising from polynomials of the form $T^p+c$, where p is a prime number and where the orbit of $0$ is finite. For example, if $p=2$ and $0$ is periodic under $T^2+c$ with $c\in \mathbb {R}$, we prove a lower bound for the local canonical height of a wandering algebraic integer that is inversely proportional to the field degree. From this, we are able to deduce a lower bound for the canonical height of a wandering point that decays like the inverse square of the field degree. For these f, our method has application to the irreducibility of polynomials. Indeed, say y is preperiodic under f but not periodic. Then any iteration of f minus y is irreducible in $\mathbb {Q}(y)[T]$.
We show that condenser capacity varies continuously under holomorphic motions, and the corresponding family of the equilibrium measures of the condensers is continuous with respect to the weak-star convergence. We also study the behavior of uniformly perfect sets under holomorphic motions.
Let $D\subset \mathbb{C}$ be a domain with $0\in D$. For $R>0$, let $\widehat{\unicode[STIX]{x1D714}}_{D}(R)$ denote the harmonic measure of $D\cap \{|z|=R\}$ at $0$ with respect to the domain $D\cap \{|z|<R\}$ and let $\unicode[STIX]{x1D714}_{D}(R)$ denote the harmonic measure of $\unicode[STIX]{x2202}D\cap \{|z|\geqslant R\}$ at $0$ with respect to $D$. The behavior of the functions $\unicode[STIX]{x1D714}_{D}$ and $\widehat{\unicode[STIX]{x1D714}}_{D}$ near $\infty$ determines (in some sense) how large $D$ is. However, it is not known whether the functions $\unicode[STIX]{x1D714}_{D}$ and $\widehat{\unicode[STIX]{x1D714}}_{D}$ always have the same behavior when $R$ tends to $\infty$. Obviously, $\unicode[STIX]{x1D714}_{D}(R)\leqslant \widehat{\unicode[STIX]{x1D714}}_{D}(R)$ for every $R>0$. Thus, the arising question, first posed by Betsakos, is the following: Does there exist a positive constant $C$ such that for all simply connected domains $D$ with $0\in D$ and all $R>0$,
In general, we prove that the answer is negative by means of two different counter-examples. However, under additional assumptions involving the geometry of $D$, we prove that the answer is positive. We also find the value of the optimal constant for starlike domains.
We give an equality condition for a symmetrization inequality for condensers proved by F.W. Gehring regarding elliptic areas. We then use this to obtain a monotonicity result involving the elliptic area of the image of a holomorphic function f.
Let $\unicode[STIX]{x1D707}$ be a positive finite Borel measure on the unit circle and ${\mathcal{D}}(\unicode[STIX]{x1D707})$ the associated harmonically weighted Dirichlet space. In this paper we show that for each closed subset $E$ of the unit circle with zero $c_{\unicode[STIX]{x1D707}}$-capacity, there exists a function $f\in {\mathcal{D}}(\unicode[STIX]{x1D707})$ such that $f$ is cyclic (i.e., $\{pf:p\text{ is a polynomial}\}$ is dense in ${\mathcal{D}}(\unicode[STIX]{x1D707})$), $f$ vanishes on $E$, and $f$ is uniformly continuous. Next, we provide a sufficient condition for a continuous function on the closed unit disk to be cyclic in ${\mathcal{D}}(\unicode[STIX]{x1D707})$.
We establish a convexity property for the hitting probabilities of discrete random walks in ${\mathbb Z}^d$ (discrete harmonic measures). For d = 2 this implies a recent result on the convexity of the density of certain harmonic measures.
This paper presents a theoremon universality on orthogonal polynomials/randommatrices under a weak local condition on the weight function $w$. With a new inequality for polynomials and with the use of fast decreasing polynomials, it is shown that an approach of D. S. Lubinsky is applicable. The proof works at all points that are Lebesgue-points for both the weight function $w$ and $\log \,w$.
We are concerned with the question how the capacity of the ideal boundary of a subsurface of a covering Riemann surface over a Riemann surface varies according to the variation of its branch points. In the present paper we treat the most primitive but fundamental situation that the covering surface is a two sheeted sphere with two branch points one of which is fixed and the other is moving and the subsurface is given as the complement of two disjoint continua each in different sheets of the covering surface whose projections are two disjoint continua in the base plane given in advance not touching the projections of branch points. We will derive a variational formula for the capacity and as one of its many useful consequences expected we will show that the capacity changes smoothly as one branch point moves in the subsurface.
in two papers, littlewood studied seemingly unrelated constants: (i) the best $\alpha$ such that for any polynomial $f$, of degree $n$, the areal integral of its spherical derivative is at most $\const\cdot n^\alpha$, and (ii) the extremal growth rate $\beta$ of the length of green's equipotentials for simply connected domains. these two constants are shown to coincide, thus greatly improving known estimates on $\alpha$.
Some results for the Bergman functions in unbounded domains are shown. In particular, a class of unbounded Hartogs domains, which are Bergman complete and Bergman exhaustive, is given.
A theorem of Beurling and Nevanlinna gives a lower bound for the harmonic measure of a compact set in the unit disk in terms of the harmonic measure of a projection of the set. In this paper, a generalization of that result is proved, involving the sum of harmonic measures evaluated at two points.
The pressure function $p(t)$ of a non-recurrent map is real analytic on some interval ($0,t_\ast$) with $t_\ast$ strictly greater than the dimension of the Julia set. The proof is an adaptation of the well known tower techniques to the complex dynamics situation. In general, $p(t)$ need not be analytic on the whole positive axis.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.