Let $p$ be an odd prime number, $K$ a $p$-adic field of degree $r$ over ${{\mathbf{Q}}_{p}}$, $O$ the ring of integers in $K,\,B\,=\,\{{{\beta }_{1}},\ldots .{{\beta }_{r}}\}$ an integral basis of $K$ over ${{\mathbf{Q}}_{p}}$, $u$ a unit in $O$ and consider sets of the form $N\,=\,\{{{n}_{1}}{{\beta }_{1}}\,+\ldots +\,{{n}_{r}}{{\beta }_{r}}\,:\,1\,\le \,{{n}_{j}}\,\le \,{{N}_{j}},\,1\,\le \,j\,\le \,r\}$. We show under certain growth conditions that the pair correlation of $\{u{{z}^{2}}\,:\,z\,\in N\}$ becomes Poissonian.