We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure [email protected]
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
The main purpose of this article is to define a quadratic analogue of the Chern character, the so-called Borel character, that identifies rational higher Grothendieck-Witt groups with a sum of rational Milnor-Witt (MW)-motivic cohomologies and rational motivic cohomologies. We also discuss the notion of ternary laws due to Walter, a quadratic analogue of formal group laws, and compute what we call the additive ternary laws, associated with MW-motivic cohomology. Finally, we provide an application of the Borel character by showing that the Milnor-Witt K-theory of a field F embeds into suitable higher Grothendieck-Witt groups of F modulo explicit torsion.
A system of quadratic forms is associated to every generalised quadratic form over a division algebra with involution of the first kind in characteristic two. It is shown that this system determines the isotropy behaviour and the isometry class of generalised quadratic forms. An application of this construction to the Witt index of generalised quadratic forms is also given.
In this paper we study the subgroup of the Picard group of Voevodsky’s category of geometric motives $\operatorname{DM}_{\text{gm}}(k;\mathbb{Z}/2)$ generated by the reduced motives of affine quadrics. Our main tools here are the functors of Bachmann [On the invertibility of motives of affine quadrics, Doc. Math. 22 (2017), 363–395], but we also provide an alternative method. We show that the group in question can be described in terms of indecomposable direct summands in the motives of projective quadrics over $k$. In particular, we describe all the relations among the reduced motives of affine quadrics. We also extend the criterion of motivic equivalence of projective quadrics.
Let $q$ be an anisotropic quadratic form defined over a general field $F$. In this article, we formulate a new upper bound for the isotropy index of $q$ after scalar extension to the function field of an arbitrary quadric. On the one hand, this bound offers a refinement of an important bound established in earlier work of Karpenko–Merkurjev and Totaro; on the other hand, it is a direct generalization of Karpenko’s theorem on the possible values of the first higher isotropy index. We prove its validity in two key cases: (i) the case where $\text{char}(F)\neq 2$, and (ii) the case where $\text{char}(F)=2$ and $q$ is quasilinear (i.e., diagonalizable). The two cases are treated separately using completely different approaches, the first being algebraic–geometric, and the second being purely algebraic.
We prove analogues of several well-known results concerning rational maps between quadrics for the class of so-called quasilinear p-hypersurfaces. These hypersurfaces are nowhere smooth over the base field, so many of the geometric methods which have been successfully applied to the study of projective homogeneous varieties over fields cannot be used. We are therefore forced to take an alternative approach, which is partly facilitated by the appearance of several non-traditional features in the study of these objects from an algebraic perspective. Our main results were previously known for the class of quasilinear quadrics. We provide new proofs here, because the original proofs do not immediately generalise for quasilinear hypersurfaces of higher degree.
Nous montrons que l’invariant de Hasse-Witt de la forme de Killing d’une algèbre de Lie semi-simple $L$ s’exprime à l’aide de l’invariant de Tits de la représentation irréductible de $L$ de poids dominant
$\rho \,=\,\frac{1}{2}$
(somme des racines positives), et des invariants associés au groupe des symétries du diagramme de Dynkin de $L$.
The splitting pattern of a quadratic form $q$ over a field $k$ consists of all distinct Witt indices that occur for $q$ over extension fields of $k$. In small dimensions, the complete list of splitting patterns of quadratic forms is known. We show that all splitting patterns of quadratic forms of dimension at most nine can be realized by trace forms.
Let F be a formally real field. A quadratic form q is called positive if sgnp ≧ 0 for all orderings P of F. A positive q is called decomposable if there exist positive forms q1, q2 such that q = q1⊥q2. Otherwise it is called indecomposable. In a first part we ask for which F there exist indecomposable three dimensional forms over F. We show that such forms exist iff F does not satisfy the property (A) defined in (J. K. Arason, A. Pfister: Zur Théorie der quadratischen Formen über formal reellen Körpern, Math Z. 153, 289-296 (1977)). We use an indecomposable three dimensional form defined by Arason and Pfister to construct indecomposable forms of arbitrary dimension. Then we examine the question for which fields F every positive form over F represents a nonzero sum of squares.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.