Adults who had non-edematous severe acute malnutrition (SAM) during infancy (i.e., marasmus) have worse glucose tolerance and beta-cell function than survivors of edematous SAM (i.e., kwashiorkor). We hypothesized that wasting and/or stunting in SAM is associated with lower glucose disposal rate (M) and insulin clearance (MCR) in adulthood.
We recruited 40 nondiabetic adult SAM survivors (20 marasmus survivors (MS) and 20 kwashiorkor survivors (KS)) and 13 matched community controls. We performed 150-minute hyperinsulinaemic, euglycaemic clamps to estimate M and MCR. We also measured serum adiponectin, anthropometry, and body composition. Data on wasting (weight-for-height) and stunting (height-for-age) were abstracted from the hospital records.
Children with marasmus had lower weight-for-height z-scores (WHZ) (−3.8 ± 0.9 vs. −2.2 ± 1.4; P < 0.001) and lower height-for-age z-scores (HAZ) (−4.6 ± 1.1 vs. −3.4 ± 1.5; P = 0.0092) than those with kwashiorkor. As adults, mean age (SD) of participants was 27.2 (8.1) years; BMI was 23.6 (5.0) kg/m2. SAM survivors and controls had similar body composition. MS and KS and controls had similar M (9.1 ± 3.2; 8.7 ± 4.6; 6.9 ± 2.5 mg.kg−1.min−1 respectively; P = 0.3) and MCR. WHZ and HAZ were not associated with M, MCR or adiponectin even after adjusting for body composition.
Wasting and stunting during infancy are not associated with insulin sensitivity and insulin clearance in lean, young, adult survivors of SAM. These data are consistent with the finding that glucose intolerance in malnutrition survivors is mostly due to beta-cell dysfunction.