The flow in gas turbines exhibits a highly unsteady, complex and nonuniform manner, which presents two main challenges. Firstly, it introduces instrumentation errors, contributing to uncertainties when calculating one-dimensional performance metrics during rig or engine tests using fixed-location rakes. Secondly, it raises mechanical concerns, including high-cycle fatigue due to blade row interactions in turbomachines and thermal fatigue caused by hot-streaks at the combustor exit. Experimental characterisation of the flow nonuniformity in gas turbines is highly challenging due to the confined space and harsh environment for instrumentation. This paper presents recent efforts to address this issue by resolving the nonuniform flow in gas turbines using spatially under-sampled measurements. The proposed approach utilises discrete probe data and leverages a ‘Fourier-based approximation’ method developed by the author. The technique has undergone preliminary experimental validation involving reconstruction of the total pressure distribution in a multi-stage axial compressor and the total temperature field at the exit of the combustor and high-pressure turbine. Results show that, in the multi-stage axial compressor environment, reconstruction of inter-stage total pressure is achieved using a reduced dataset covering less than 20% of the annulus with reasonably good accuracy. The reconstructed total pressure yields almost identical mean total pressure values at all spanwise locations, with a maximum deviation of less than 0.02%. Additionally, reconstruction of the total temperature distribution at an engine-representative full annulus combustor is achieved using measurements at ten carefully selected circumferential locations. Results show that the reconstructed temperature field successfully captures the primary features associated with combustor exit temperature flow. The reconstructed temperature field yields excellent agreement in the magnitude of radial temperature distribution factor (RTDF) and overall temperature distribution factor (OTDF) predictions to the experiment, with a deviation of less than 0.5% for RTDF and less than 2.5% for OTDF. Lastly, reconstruction of the total temperature distribution at the exit of the GE E3 high-pressure turbine (HPT) is achieved using measurements at eight carefully selected circumferential locations. Results demonstrate remarkable robustness in resolving the temperature profile at the HPT exit with high fidelity, irrespective of the HPT inlet conditions. The initial validation results are promising, demonstrating that the new probe layout scheme and the Fourier-based approximation method enable effective characterisation of flow nonuniformity in gas turbines, thereby providing valuable insights into the complex flow of gas turbine engines.