We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure [email protected]
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
For a simply-connected closed manifold X of $\dim X \neq 4$, the mapping class group $\pi _0(\mathrm {Diff}(X))$ is known to be finitely generated. We prove that analogous finite generation fails in dimension 4. Namely, we show that there exist simply-connected closed smooth 4-manifolds whose mapping class groups are not finitely generated. More generally, for each $k>0$, we prove that there are simply-connected closed smooth 4-manifolds X for which $H_k(B\mathrm {Diff}(X);\mathbb {Z})$ are not finitely generated. The infinitely generated subgroup of $H_k(B\mathrm {Diff}(X);\mathbb {Z})$ which we detect are topologically trivial, and unstable under the connected sum of $S^2 \times S^2$. These results are proven by constructing and computing an infinite family of characteristic classes using Seiberg–Witten theory.
In this paper, we generalize the original idea of Thurston for the so-called Mather-Thurston’s theorem for foliated bundles to prove new variants of this theorem for PL homeomorphisms and contactormorphisms. These versions answer questions posed by Gelfand-Fuks ([GF73, Section 5]) and Greenberg ([Gre92]) on PL foliations and Rybicki ([Ryb10, Section 11]) on contactomorphisms. The interesting point about the original Thurston’s technique compared to the better-known Segal-McDuff’s proof of the Mather-Thurston theorem is that it gives a compactly supported c-principle theorem without knowing the relevant local statement on open balls. In the appendix, we show that Thurston’s fragmentation implies the non-abelian Poincare duality theorem and its generalization using blob complexes ([MW12, Theorem 7.3.1]).
We define a suitably tame class of singular symplectic curves in 4-manifolds, namely those whose singularities are modeled on complex curve singularities. We study the corresponding symplectic isotopy problem, with a focus on rational curves with irreducible singularities (rational cuspidal curves) in the complex projective plane. We prove that every such curve is isotopic to a complex curve in degrees up to five, and for curves with one singularity whose link is a torus knot. Classification results of symplectic isotopy classes rely on pseudo-holomorphic curves together with a symplectic version of birational geometry of log pairs and techniques from four-dimensional topology.
We work in the smooth category. Let $N$ be a closed connected orientable 4-manifold with torsion free $H_1$, where $H_q := H_q(N; {\mathbb Z} )$. Our main result is a readily calculable classification of embeddings$N \to {\mathbb R}^7$up to isotopy, with an indeterminacy. Such a classification was only known before for $H_1=0$ by our earlier work from 2008. Our classification is complete when $H_2=0$ or when the signature of $N$ is divisible neither by 64 nor by 9.
The group of knots $S^4\to {\mathbb R}^7$ acts on the set of embeddings $N\to {\mathbb R}^7$ up to isotopy by embedded connected sum. In Part I we classified the quotient of this action. The main novelty of this paper is the description of this action for $H_1 \ne 0$, with an indeterminacy.
Besides the invariants of Part I, detecting the action of knots involves a refinement of the Kreck invariant from our work of 2008.
For $N=S^1\times S^3$ we give a geometrically defined 1–1 correspondence between the set of isotopy classes of embeddings and a certain explicitly defined quotient of the set ${\mathbb Z} \oplus {\mathbb Z} \oplus {\mathbb Z} _{12}$.
For a smooth manifold N denote by Em(N) the set of smooth isotopy classes of smooth embeddings N → ℝm. A description of the set Em(Sp × Sq) was known only for p = q = 0 or for p = 0, m ≠ q + 2 or for 2m ⩾ 2(p + q) + max{p, q} + 4. (The description was given in terms of homotopy groups of spheres and of Stiefel manifolds.) For m ⩾ 2p + q + 3 we introduce an abelian group structure on Em(Sp × Sq) and describe this group ‘up to an extension problem’. This result has corollaries which, under stronger dimension restrictions, more explicitly describe Em(Sp × Sq). The proof is based on relations between sets Em(N) for different N and m, in particular, on a recent exact sequence of M. Skopenkov.
Piecewise-linear (nonambient) isotopy of classical links may be regarded as link theory modulo knot theory. This note considers an adaptation of new (and old) polynomial link invariants to this theory, obtained simply by dividing a link's polynomial by the polynomials of the individual components. The resulting rational functions are effective in distinguishing isotopy classes of links, and in demonstrating that certain links are essentially knotted in the sense that every link in its isotopy class has a knotted component. We also establish geometric criteria for essential knotting of links.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.