We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure [email protected]
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Let $M$ be an oriented smooth manifold and $\operatorname{Homeo}\!(M,\omega )$ the group of measure preserving homeomorphisms of $M$, where $\omega$ is a finite measure induced by a volume form. In this paper, we define volume and Euler classes in bounded cohomology of an infinite dimensional transformation group $\operatorname{Homeo}_0\!(M,\omega )$ and $\operatorname{Homeo}_+\!(M,\omega )$, respectively, and in several cases prove their non-triviality. More precisely, we define:
• Volume classes in $\operatorname{H}_b^n(\operatorname{Homeo}_0\!(M,\omega ))$, where $M$ is a hyperbolic manifold of dimension $n$.
• Euler classes in $\operatorname{H}_b^2(\operatorname{Homeo}_+(S,\omega ))$, where $S$ is an oriented closed hyperbolic surface.
We show that Euler classes have positive norms for any closed hyperbolic surface and volume classes have positive norms for all hyperbolic surfaces and certain hyperbolic $3$-manifolds; hence, they are non-trivial.
Let $h : \mathbb{R}^2 \to \mathbb{R}^2$ be an orientation preserving homeomorphism of the plane. For any bounded orbit $\mathcal{O}(x)=\{h^n(x):n\in\mathbb{Z}\}$ there exists a fixed point $p\in\mathbb{R}^2$ of h linked to $\mathcal{O}(x)$ in the sense of Gambaudo: one cannot find a Jordan curve $C\subseteq\mathbb{R}^2$ around $\mathcal{O}(x)$, separating it from p, that is isotopic to h(C) in $\mathbb{R}^2\setminus\left(\mathcal{O}(x)\cup\{p\}\right)$.
In this paper we study persistence features of topological entropy and periodic orbit growth of Hamiltonian diffeomorphisms on surfaces with respect to Hofer's metric. We exhibit stability of these dynamical quantities in a rather strong sense for a specific family of maps studied by Polterovich and Shelukhin. A crucial ingredient comes from enhancement of lower bounds for the topological entropy and orbit growth forced by a periodic point, formulated in terms of the geometric self-intersection number and a variant of Turaev's cobracket of the free homotopy class that it induces. Those bounds are obtained within the framework of Le Calvez and Tal's forcing theory.
As a weak version of embedding flow, the problem of iterative roots is studied extensively in one dimension, especially in monotone case. There are few results in high dimensions because the constructive method dealing with monotone mappings is unavailable. In this paper, by introducing a kind of partial order, we define the monotonicity for two-dimensional mappings and then present some results on the existence of iterative roots for linear mappings, triangle-type mappings, and co-triangle-type mappings, respectively. Our theorems show that even the property of monotonicity for iterative roots of monotone mappings, which is a trivial result in one dimension, does not hold anymore in high dimensions. At the end of this paper, the problem of iterative roots for two well-known planar mappings, that is, Hénon mappings and coupled logistic mappings, are also discussed.
We define a new family of spectral invariants associated to certain Lagrangian links in compact and connected surfaces of any genus. We show that our invariants recover the Calabi invariant of Hamiltonians in their limit. As applications, we resolve several open questions from topological surface dynamics and continuous symplectic topology: We show that the group of Hamiltonian homeomorphisms of any compact surface with (possibly empty) boundary is not simple; we extend the Calabi homomorphism to the group of hameomorphisms constructed by Oh and Müller, and we construct an infinite-dimensional family of quasi-morphisms on the group of area and orientation preserving homeomorphisms of the two-sphere.
Our invariants are inspired by recent work of Polterovich and Shelukhin defining and applying spectral invariants, via orbifold Floer homology, for links composed of parallel circles in the two-sphere. A particular feature of our work is that it avoids the orbifold setting and relies instead on ‘classical’ Floer homology. This not only substantially simplifies the technical background but seems essential for some aspects (such as the application to constructing quasi-morphisms).
Recall that two geodesics in a negatively curved surface S are of the same type if their free homotopy classes differ by a homeomorphism of the surface. In this note we study the distribution in the unit tangent bundle of the geodesics of fixed type, proving that they are asymptotically equidistributed with respect to a certain measure
${\mathfrak {m}}^S$
on
$T^1S$
. We study a few properties of this measure, showing for example that it distinguishes between hyperbolic surfaces.
Many natural real-valued functions of closed curves are known to extend continuously to the larger space of geodesic currents. For instance, the extension of length with respect to a fixed hyperbolic metric was a motivating example for the development of geodesic currents. We give a simple criterion on a curve function that guarantees a continuous extension to geodesic currents. The main condition of our criterion is the smoothing property, which has played a role in the study of systoles of translation lengths for Anosov representations. It is easy to see that our criterion is satisfied for almost all known examples of continuous functions on geodesic currents, such as nonpositively curved lengths or stable lengths for surface groups, while also applying to new examples like extremal length. We use this extension to obtain a new curve counting result for extremal length.
We study a mathematical model proposed in the literature with the aim of describing the interactions between tumor cells and the immune system, when a periodic treatment of immunotherapy is applied. Combining some techniques from non-linear analysis (degree theory, lower and upper solutions, and theory of free-homeomorphisms in the plane), we give a detailed global analysis of the model. We also observe that for certain therapies, the maximum level of aggressiveness of a cancer, for which the treatment works (or does not work), can be computed explicitly. We discuss some strategies for designing therapies. The mathematical analysis is completed with numerical results and conclusions.
We develop a thermodynamic formalism for a smooth realization of pseudo-Anosov surface homeomorphisms. In this realization, the singularities of the pseudo-Anosov map are assumed to be fixed, and the trajectories are slowed down so the differential is the identity at these points. Using Young towers, we prove existence and uniqueness of equilibrium states for geometric t-potentials. This family of equilibrium states includes a unique SRB measure and a measure of maximal entropy, the latter of which has exponential decay of correlations and the central limit theorem.
We show that
$C^r $
generically in the space of
$C^r$
conservative diffeomorphisms of a compact surface, every hyperbolic periodic point has a transverse homoclinic orbit.
We prove that, if f is a homeomorphism of the 2-torus isotopic to the identity whose rotation set is a non-degenerate segment and f has a periodic point, then it has uniformly bounded deviations in the direction perpendicular to the segment.
A diffeomorphism of the plane is Anosov if it has a hyperbolic splitting at every point of the plane. In addition to linear hyperbolic automorphisms, translations of the plane also carry an Anosov structure (the existence of Anosov structures for plane translations was originally shown by White). Mendes conjectured that these are the only topological conjugacy classes for Anosov diffeomorphisms in the plane. Very recently, Matsumoto gave an example of an Anosov diffeomorphism of the plane, which is a Brouwer translation but not topologically conjugate to a translation, disproving Mendes’ conjecture. In this paper we prove that Mendes’ claim holds when the Anosov diffeomorphism is the time-one map of a flow, via a theorem about foliations invariant under a time-one map. In particular, this shows that the kind of counterexample constructed by Matsumoto cannot be obtained from a flow on the plane.
We study the rotation sets for homeomorphisms homotopic to the identity on the torus
$\mathbb T^d$
,
$d\ge 2$
. In the conservative setting, we prove that there exists a Baire residual subset of the set
$\text {Homeo}_{0, \lambda }(\mathbb T^2)$
of conservative homeomorphisms homotopic to the identity so that the set of points with wild pointwise rotation set is a Baire residual subset in
$\mathbb T^2$
, and that it carries full topological pressure and full metric mean dimension. Moreover, we prove that for every
$d\ge 2$
the rotation set of
$C^0$
-generic conservative homeomorphisms on
$\mathbb T^d$
is convex. Related results are obtained in the case of dissipative homeomorphisms on tori. The previous results rely on the description of the topological complexity of the set of points with wild historic behavior and on the denseness of periodic measures for continuous maps with the gluing orbit property.
We describe topological obstructions (involving periodic points, topological entropy and rotation sets) for a homeomorphism on a compact manifold to embed in a continuous flow. We prove that homeomorphisms in a $C^{0}$-open and dense set of homeomorphisms isotopic to the identity in compact manifolds of dimension at least two are not the time-1 map of a continuous flow. Such property is also true for volume-preserving homeomorphisms in compact manifolds of dimension at least five. In the case of conservative homeomorphisms of the torus $\mathbb {T}^{d} (d\ge 2)$ isotopic to identity, we describe necessary conditions for a homeomorphism to be flowable in terms of the rotation sets.
Let $\operatorname{Homeo}_{+}(D_{n}^{2})$ be the group of orientation-preserving homeomorphisms of $D^{2}$ fixing the boundary pointwise and $n$ marked points as a set. The Nielsen realization problem for the braid group asks whether the natural projection $p_{n}:\operatorname{Homeo}_{+}(D_{n}^{2})\rightarrow B_{n}:=\unicode[STIX]{x1D70B}_{0}(\operatorname{Homeo}_{+}(D_{n}^{2}))$ has a section over subgroups of $B_{n}$. All of the previous methods use either torsion or Thurston stability, which do not apply to the pure braid group $PB_{n}$, the subgroup of $B_{n}$ that fixes $n$ marked points pointwise. In this paper, we show that the pure braid group has no realization inside the area-preserving homeomorphisms using rotation numbers.
We begin by defining a homoclinic class for homeomorphisms. Then we prove that if a topological homoclinic class Λ associated with an area-preserving homeomorphism f on a surface M is topologically hyperbolic (i.e. has the shadowing and expansiveness properties), then Λ = M and f is an Anosov homeomorphism.
We extend the unpublished work of Handel and Miller on the classification, up to isotopy, of endperiodic automorphisms of surfaces. We give the Handel–Miller construction of the geodesic laminations, give an axiomatic theory for pseudo-geodesic laminations, show that the geodesic laminations satisfy the axioms, and prove that pseudo-geodesic laminations satisfying our axioms are ambiently isotopic to the geodesic laminations. The axiomatic approach allows us to show that the given endperiodic automorphism is isotopic to a smooth endperiodic automorphism preserving smooth laminations ambiently isotopic to the original ones. Using the axioms, we also prove the ‘transfer theorem’ for foliations of 3-manifolds, namely that, if two depth-one foliations ${\mathcal{F}}$ and ${\mathcal{F}}^{\prime }$ are transverse to a common one-dimensional foliation ${\mathcal{L}}$ whose monodromy on the non-compact leaves of ${\mathcal{F}}$ exhibits the nice dynamics of Handel–Miller theory, then ${\mathcal{L}}$ also induces monodromy on the non-compact leaves of ${\mathcal{F}}^{\prime }$ exhibiting the same nice dynamics. Our theory also applies to surfaces with infinitely many ends.
We consider closed orientable surfaces $S$ of genus $g>1$ and homeomorphisms $f:S\rightarrow S$ isotopic to the identity. A set of hypotheses is presented, called a fully essential system of curves $\mathscr{C}$ and it is shown that under these hypotheses, the natural lift of $f$ to the universal cover of $S$ (the Poincaré disk $\mathbb{D}$), denoted by $\widetilde{f},$ has complicated and rich dynamics. In this context, we generalize results that hold for homeomorphisms of the torus isotopic to the identity when their rotation sets contain zero in the interior. In particular, for $C^{1+\unicode[STIX]{x1D716}}$ diffeomorphisms, we show the existence of rotational horseshoes having non-trivial displacements in every homotopical direction. As a consequence, we found that the homological rotation set of such an $f$ is a compact convex subset of $\mathbb{R}^{2g}$ with maximal dimension and all points in its interior are realized by compact $f$-invariant sets and by periodic orbits in the rational case. Also, $f$ has uniformly bounded displacement with respect to rotation vectors in the boundary of the rotation set. This implies, in case where $f$ is area preserving, that the rotation vector of Lebesgue measure belongs to the interior of the rotation set.
An isotopic to the identity map of the 2-torus, that has zero rotation vector with respect to an invariant ergodic probability measure, has a fixed point by a theorem of Franks. We give a version of this result for nilpotent subgroups of isotopic to the identity diffeomorphisms of the 2-torus. In such a context we guarantee the existence of global fixed points for nilpotent groups of irrotational diffeomorphisms. In particular, we show that the derived group of a nilpotent group of isotopic to the identity diffeomorphisms of the 2-torus has a global fixed point.
We show that the stable and unstable sets of non-uniformly hyperbolic horseshoes arising in some heteroclinic bifurcations of surface diffeomorphisms have the value conjectured in a previous work by the second and third authors of the present paper. Our results apply to first heteroclinic bifurcations associated with horseshoes with Hausdorff dimension ${<}22/21$ of conservative surface diffeomorphisms.