We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save this undefined to your undefined account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your undefined account.
Find out more about saving content to .
To send this article to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
In this study, the effect of simple shearing on microstructure evolution and mechanical properties of 316L austenitic stainless steel were investigated. Two different shear strain routes were obtained by twisting cylindrical specimens in the forward and backward directions. The strain-induced martensite phase was effectively obtained by alteration of the routes. Formation of the martensite phase clearly resulted in significant hardening of the steel. Grain-size reduction and strain-induced martensitic transformation within the deformed structures of the strained specimens were characterized by scanning electron microscopy – electron back-scattered diffraction, X-ray diffraction, and the TEM-ASTAR (transmission electron microscopy – analytical scanning transmission atomic resolution, automatic crystal orientation/phase mapping for TEM) system. Significant numbers of twin networks were formed by alteration of the shear strain routes, and the martensite phases were nucleated at the twin interfaces.
Archaeological materials present unique records on natural processes allowing the study of long-term material behaviors such as structural modifications and degradation mechanisms. The present work is focused on the chemical and microstructural characterization of four prehistoric arsenical copper artifacts. These artifacts were characterized by micro-energy dispersive X-ray fluorescence spectrometry, optical microscopy, scanning electron microscopy with X-ray microanalysis, micro-X-ray diffraction and synchrotron radiation micro-X-ray diffraction. Cu3As is the expected intermetallic arsenide in arsenical copper alloys, reported in the literature as exhibiting a hexagonal crystallographic structure. However, a cubic Cu3As phase was identified by X-ray diffraction in all of our analyzed archaeological artifacts, while the hexagonal Cu3As phase was clearly identified only in the artifact with higher arsenic content. Occurrence of the cubic arsenide in these particular objects, suggests that it was precipitated due to long-term aging at room temperature, which points to the need of a redefinition of the Cu-As equilibrium phase constitution. These results highlight the importance of understanding the impact of structural aging for the assessment of original properties of archaeological arsenical copper artifacts, such as hardness or color.
This work comprises the use of a multi-analytical approach combined with microbiological studies to characterize six paper samples, containing foxing stains, from the 20th century, regarding their cellulose matrix, fillers, and sizing materials, and to evaluate possible paper degradation that might have occurred during the foxing stains. Photography under different illuminations and optical microscopy were used for morphological characterization of the paper samples and foxing stains. Scanning electron microscopy coupled energy dispersive spectroscopy (SEM-EDS) was of particular importance for defining the presence of fiber disorder and disruption on the surface of some of the stains, and localized accumulations of mineral-like particles on the surface of others. SEM-EDS, attenuated total reflection Fourier transform infrared spectroscopy (ATR-FT-IR), and energy dispersive X-ray fluorescence (EDXRF) were used for the identification of mineral fillers, whereas sizing agents were analyzed using ATR-FT-IR. EDXRF results showed that no differences, within the standard deviation, were found in iron and copper contents between the foxed and unfoxed areas. Fungi belonging to the genus Penicillium spp. were found in all the paper samples. Unfoxed areas presented lower contamination than the foxed areas.
We used atomic force microscopy (AFM) to diagnose pathological changes in the extracellular matrix (ECM) of skin connective tissue in patients with pelvic organ prolapse (POP). POP is a common condition affecting women that considerably decreases the patients’ quality of life. Deviations from normal morphology of the skin ECM from patients with POP occur including packing and arrangement of individual collagen fibers and arrangement of collagen fibrils. The nanoindentation study revealed significant deterioration of the mechanical properties of collagen fibril bundles in the skin of POP patients as compared with the skin of healthy subjects. Changes in the skin ECM appeared to correlate well with changes in the ECM of the pelvic ligament tissue associated with POP. AFM data on the ECM structure of normal and pathologically altered connective tissue were in agreement with results of the standard histological study on the same clinical specimens. Thus, AFM and related techniques may serve as independent or complementary diagnostic tools for tracking POP-related pathological changes of connective tissue.
Analytical and Instrumentation Science Symposia
A01 Vendor Symposium: New Tools for Life and Materials Sciences
This study evaluated the influence of tubular density of different dentin depths and location on the bond strength of high-viscosity glass ionomer cements (GIC). A total of 20 molars were selected and assigned into six experimental groups, considering two different high-viscosity GICs—Fuji IX (FIX) or Ketac Molar (KM), and dentin location—proximal, occlusal superficial, or occlusal deep dentin (n=10). Teeth were cut and a topographical analysis of four sections per group was performed to obtain data about the tubular density of each different dentin location and depths by laser scanning confocal microscopy (100×). Polyethylene tubes were placed over the pretreated surfaces and filled with one of the GICs. Microshear bond strength (µSBS) test was performed after storage in distilled water (24 h at 37°C). Failure modes were evaluated using a stereomicroscope (400×). Multilevel regression analysis was performed to compare the results at a significance level set at 5%. The tubule density was inversely proportional to the bond strength for both GICs (p<0.05). Adhesive/mixed failure prevailed in all experimental groups. Proximal (30036.5±3433.3) and occlusal superficial 29665.3±1434.04 dentin shows lower tubule density, resulting in a better GIC bonding performance (proximal: FIX–3.61±1.05; KM–3.40±1.62; occlusal superficial: FIX–4.70±1.85; KM–4.97±1.25). Thus, we can concluded that the lowest tubule density in proximal and occlusal superficial dentin results in a better GIC bond strength performance.
Nanobelt-like precipitates in an Al–Si–Mg–Hf alloy were studied using electron backscattered diffraction (EBSD) and focused ion beam (FIB) scanning electron microscopy techniques. One grain of the Al matrix with a near [111] normal direction was identified by EBSD and the three-dimensional (3D) microstructure of nanobelt-like precipitates in this grain was studied using 3D-FIB. Ten growth directions of the nanobelt-like precipitates in the grain were identified.
This work developed a phase congruency algorithm combined with texture analysis to quantitatively characterize collagen morphology in second-harmonic generation (SHG) images from human scars. The extracted phase and texture parameters of the SHG images quantified collagen directionality, homogeneity, and coarseness in scars and varied with scar duration. Phase parameters showed an increasing tendency of the mean of phase congruency with scar duration, indicating that collagen fibers are better oriented over time. Texture parameters calculated from local difference local binary pattern (LD-LBP) and Haar wavelet transform, demonstrated that the LD-LBP variance decreased and the energy of all subimages increased with scar duration. It implied that collagen has a more regular pattern and becomes coarser with scar duration. In addition, the random forest regression was used to predict scar duration, demonstrating reliable performance of the extracted phase and texture parameters in characterizing collagen morphology in scar SHG images. Results indicate that the extracted parameters using the proposed method can be used as quantitative indicators to monitor scar progression with time and can help understand the mechanism of scar progression.
Siliciclastic reservoir rocks of the North Alpine Foreland Basin were studied focusing on investigations of pore fillings. Conventional oil and gas production requires certain thresholds of porosity and permeability. These parameters are controlled by the size and shape of grains and diagenetic processes like compaction, dissolution, and precipitation of mineral phases. In an attempt to estimate the impact of these factors, conventional microscopy, high resolution scanning electron microscopy, and wavelength dispersive element mapping were applied. Rock types were established accordingly, considering Poro/Perm data. Reservoir properties in shallow marine Cenomanian sandstones are mainly controlled by the degree of diagenetic calcite precipitation, Turonian rocks are characterized by reduced permeability, even for weakly cemented layers, due to higher matrix content as a result of lower depositional energy. Eocene subarkoses tend to be coarse-grained with minor matrix content as a result of their fluvio-deltaic and coastal deposition. Reservoir quality is therefore controlled by diagenetic clay and minor calcite cementation.Although Eocene rocks are often matrix free, occasionally a clay mineral matrix may be present and influence cementation of pores during early diagenesis. Oligo-/Miocene deep marine rocks exhibit excellent quality in cases when early cement is dissolved and not replaced by secondary calcite, mainly bound to the gas–water contact within hydrocarbon reservoirs.
Analytical and Instrumentation Science Symposia
A01 Vendor Symposium: New Tools for Life and Materials Sciences
Microtubules of cardiac myocytes depolymerize after a hypoxic insult or treatment with colchicine. However, little attention has been paid to quantifying changes in microtubule distribution when using fluorescent images. We converted fluorescence images of labeled microtubules in H9C2 cardiac myocytes to grayscale images, then filtered the images to remove any noise, and used grayscale histograms to quantify features of the images. The results show that parameters such as the mean, variance, skewness, kurtosis, energy, and entropy can be used to quantitatively describe the distribution of microtubules in cells. Quantitative characteristics of microtubule distribution were similar after culturing cells under hypoxic conditions or after treatment with colchicine. These results parallel those described for neonatal rat cardiac myocytes following ischemia and hypoxia. In addition, we provide a method for internal segmentation of the cells, which revealed that microtubular depolymerization was more evident near the cell membrane following hypoxia or colchicine treatment.