Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2025-01-05T17:44:22.513Z Has data issue: false hasContentIssue false

Diagenetic Evolution and Reservoir Quality of Sandstones in the North Alpine Foreland Basin: A Microscale Approach*

Published online by Cambridge University Press:  14 September 2015

Doris Gross*
Affiliation:
Department of Applied Geosciences and Geophysics, Montanuniversitaet Leoben, A-8700 Leoben, Austria
Marie-Louise Grundtner
Affiliation:
Department of Applied Geosciences and Geophysics, Montanuniversitaet Leoben, A-8700 Leoben, Austria
David Misch
Affiliation:
Department of Applied Geosciences and Geophysics, Montanuniversitaet Leoben, A-8700 Leoben, Austria
Martin Riedl
Affiliation:
Department of Applied Geosciences and Geophysics, Montanuniversitaet Leoben, A-8700 Leoben, Austria
Reinhard F. Sachsenhofer
Affiliation:
Department of Applied Geosciences and Geophysics, Montanuniversitaet Leoben, A-8700 Leoben, Austria
Lorenz Scheucher
Affiliation:
Rohoel-Aufsuchungs AG, Schwarzenbergplatz 16, A-1015 Wien, Austria
*
*Corresponding author. [email protected]
Get access

Abstract

Siliciclastic reservoir rocks of the North Alpine Foreland Basin were studied focusing on investigations of pore fillings. Conventional oil and gas production requires certain thresholds of porosity and permeability. These parameters are controlled by the size and shape of grains and diagenetic processes like compaction, dissolution, and precipitation of mineral phases. In an attempt to estimate the impact of these factors, conventional microscopy, high resolution scanning electron microscopy, and wavelength dispersive element mapping were applied. Rock types were established accordingly, considering Poro/Perm data. Reservoir properties in shallow marine Cenomanian sandstones are mainly controlled by the degree of diagenetic calcite precipitation, Turonian rocks are characterized by reduced permeability, even for weakly cemented layers, due to higher matrix content as a result of lower depositional energy. Eocene subarkoses tend to be coarse-grained with minor matrix content as a result of their fluvio-deltaic and coastal deposition. Reservoir quality is therefore controlled by diagenetic clay and minor calcite cementation.Although Eocene rocks are often matrix free, occasionally a clay mineral matrix may be present and influence cementation of pores during early diagenesis. Oligo-/Miocene deep marine rocks exhibit excellent quality in cases when early cement is dissolved and not replaced by secondary calcite, mainly bound to the gas–water contact within hydrocarbon reservoirs.

Type
EMAS Special Issue
Copyright
© Microscopy Society of America 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

*

This article is intended for the Special Issue from the EMAS 2014 Workshop on Electron Probe Microanalysis of Materials Today - Rare and Noble Elements: from Ore Deposits to High-tech Materials.

References

Borowski, K. (2007). Lithofacies and Depositional Environment of the Upper Hall Formation, Alpine Molasse Basin, Upper Austria. Unpublished report, TU Freiberg, Freiberg.Google Scholar
Brix, F. & Schultz, O. (eds.) (1993). Erdöl und Erdgas in Österreich. Veröff Nathist Mus Wien, Horn.Google Scholar
De Ruig, M.J. (2003). Deep marine sedimentation and gas reservoir distribution in Upper Austria. OIL GAS European Magazine 2, 6473.Google Scholar
Folk, R.L. (1968). Petrology of Sedimentary Rocks. Austin, Texas: Hemphill Publishing Company.Google Scholar
Füchtbauer, H. (1988). Sedimente und Sedimentgesteine. Stuttgart, Germany: Schweizerbart.Google Scholar
Gross, D., Sachsenhofer, R.F., Geissler, M., Rech, A., Sageder, S.t., Schnitzer, S.t. & Troiss, W. (2015). The Trattnach Oil Field in the North Alpine Foreland Basin (Austria). Austrian J Earth Sci 108(2) (accepted).Google Scholar
Grunert, P., Auer, G., Harzhauser, M. & Piller, W.E. ( 2015). Stratigraphic constraints for the Upper Oligocene to Lower Miocene Puchkirchen Group (North Alpine Foreland Basin, Central Paratethys). Newsl Stratigr 48/1, 111133.Google Scholar
Grunert, P., Hinsch, R., Sachsenhofer, R.F., Bechtel, A., Ćorić, S., Harzhauser, M., Piller, W.E. & Sperl, H. (2013). Early Burdigalian infill of the Puchkirchen trough (North Alpine Foreland Basin, Central Paratethys): facies development and sequence stratigraphy. Mar Pet Geol 39, 164186.CrossRefGoogle Scholar
Gusterhuber, J., Dunkl, I., Hinsch, R., Linzer, H.-G. & Sachsenhofer, R.F. (2012). Neogene uplift and erosion in the Alpine Foreland Basin (Upper Austria and Salzburg). Geol Carpathica 63(4), 295305.Google Scholar
Hubbard, S.M., de Ruig, M.J. & Graham, S.A. (2009). Confined channel-levee complex development in an elongate depo-center: deep-water tertiary strata of the Austria Molasse basin. Mar Pet Geol 26, 85112.Google Scholar
JCPDS (1974). Joint Committee for the Powder Diffraction Standards: Selected Powder Diffraction Data for Minerals. Pennsylvania, USA: JCPDS.Google Scholar
Kröll, A., Wagner, L., Wessely, G. & Zych, D. (2005). Molassezone Salzburg-Oberösterreich. Strukturkarte der Molassebasis 1:200 000. Vienna: Geol. B.-A.Google Scholar
Nachtmann, W. (1995). Das Cenoman im Untergrund der oberösterreichischen Molasse – eine lagerstättengeologische Betrachtung. Zbl Paläont I, 1/2, 271281.Google Scholar
Nachtmann, W. & Wagner, L. (1987). Mesozoic and early tertiary evolution of the Alpine Foreland in Upper Austria and Salzburg, Austria. Tectonophysics 137, 6176.Google Scholar
Niebuhr, B., Pürner, T. & Wilmsen, M. (2009). Lithostratigraphie der außeralpinen Kreide Bayerns. Schriftenreihe der Deutschen Gesellschaft für Geowissenschaften 65, 758.Google Scholar
Rasser, M.W. & Piller, W.E. (2004). Crustose algal frameworks from the Eocene Alpine Foreland. Palaeogeogr Palaeoclimatol Palaeoecol 206, 2139.Google Scholar
Reischenbacher, D. & Sachsenhofer, R.F. (2011). Entstehung von Erdgas in der oberösterreichischen Molassezone: Daten und offene Fragen. Berg- und Hüttenmännische Monatshefte 156(11), 455460.Google Scholar
Sachsenhofer, R.F., Leitner, B., Linzer, H.-G., Bechtel, A., Coric, S., Gratzer, R., Reischenbacher, D. & Soliman, A. (2010). Deposition, erosion and hydrocarbon source potential of the Oligocene Eggerding Formation (Molasse Basin, Austria). Austrian J Earth Sci 103, 7699.Google Scholar
Sachsenhofer, R.F. & Schulz, H.-M. (2006). Architecture of Lower Oligocene source rocks in the Alpine Foreland Basin: a model for syn- and post-depositional source-rock features in the Paratethyan realm. Pet Geosci 12, 363377.CrossRefGoogle Scholar
Schulz, H.-M., Sachsenhofer, R.F., Bechtel, A., Polesny, H. & Wagner, L. (2002). The origin of hydrocarbon source rocks in the Austrian Molasse Basin (Eocene – Oligocene transition). Mar Petrol Geol 19(6), 683709.CrossRefGoogle Scholar
Schultz, L.G. (1964). Quantitative interpretation of mineralogical composition from X-ray and chemical data for the Pierre shale. US Geol Surv Prof Pap 391–C, 131.Google Scholar
Sissingh, W. (1997). Tectonostratigraphy of the North Alpine Foreland Basin: correlation of Tertiary depositional cycles and orogenic phases. Tectonophysics 282, 223256.Google Scholar
Véron, J. (2005). The alpine molasse basin – review of petroleum geology and remaining potential. Bull Angew Geol 10, 7586.Google Scholar
Wagner, L.R. (1980). Geologische Charakteristik der wichtigsten Erdöl- und Erdgasträger der oberösterreichischen Molasse. Teil I: Sandsteine des Obereozäns. Erdöl-Erdgas Zeitschrift 96, 338346.Google Scholar
Wagner, L.R. (1996). Stratigraphy and hydrocarbons in the Upper Austrian Molasse Foredeep (active margin). In Oil and Gas in Aplidic Thrustbelts and Basins of Central and Eastern Europe, Wessely, G. & Liebl, W. (Eds.), pp. 217235. Bath: EAGE Special Publications. 5.Google Scholar
Wagner, L.R. (1998). Tectono-stratigraphy and hydrocarbons in the Molasse Foredeep of Salzburg, Upper and Lower Austria. In Cenozoic Foreland Basins of Western Europe, Mascle, A., Puigdefabregas, C., Luterbach, H.P. & Fernàndez, M. (Eds.), pp. 339369. London: Geological Society Special Publications 134.Google Scholar