This study examined whether the association between age and amygdala–medial prefrontal cortex (mPFC) connectivity in typically developing 6- to 10-year-old children is correlated with parental care. Resting-state functional magnetic resonance imaging scans were acquired from 124 children of the Generation R Study who at 4 years old had been observed interacting with their parents to assess maternal and paternal sensitivity. Amygdala functional connectivity was assessed using a general linear model with the amygdalae time series as explanatory variables. Higher level analyses assessing Sensitivity × Age as well as exploratory Sensitivity × Age × Gender interaction effects were performed restricted to voxels in the mPFC. We found significant Sensitivity × Age interaction effects on amygdala–mPFC connectivity. Age was related to stronger amygdala–mPFC connectivity in children with a lower combined parental sensitivity score (b = 0.11, p = .004, b = 0.06, p = .06, right and left amygdala, respectively), but not in children with a higher parental sensitivity score, (b = –0.07, p = .12, b = –0.06, p = .12, right and left amygdala, respectively). A similar effect was found for maternal sensitivity, with stronger amygdala–mPFC connectivity in children with less sensitive mothers. Exploratory (parental, maternal, paternal) Sensitivity × Age × Gender interaction analyses suggested that this effect was especially pronounced in girls. Amygdala-mPFC resting-state functional connectivity has been shown to increase from age 10.5 years onward, implying that the positive association between age and amygdala–mPFC connectivity in 6- to 10-year-old children of less sensitive parents represents accelerated development of the amygdala–mPFC circuit.