Immunocytochemical techniques applied to sections and whole-mount preparations of cercariae from two species of trematodes, Trichobilharzia ocellata and Schistosoma mansoni, revealed the occurrence of immunoreactivity (IR) to several neurosubstances in the nervous system (NS). Immunostaining was localized in cerebral ganglia, in the main commissure, in anterior and posterior nerve trunks, as well as in a pair of nerve fibres running along the tail. In T. Ocellata, immunoreactivity (IR) was observed with antisera raised against: glutamate, FMRFamide, catch-relaxing peptide (CARP), small cardiac peptide B (SCPB), arg-vasotocin (AVT), arg-vasopressin (AVP), and substance P. In S. mansoni antisera raised against glutamate, FMRFamide, CARP, SCPB, α-caudodorsal cell peptides (α-CDCP), and cholecystokinin (CCK) showed neuronal IR. With the other 51 antisera tested no IR was observed. With anti-APGWamide, IR was observed outside the NS in cells of the wall of the daughter sporocyst and in flame cells of cercariae of T. ocellata. IR to FMRFamide was present in the escape glands of the intrasporocystic cercariae of T. ocellata and S. mansoni. IR to somatostatin was observed in subtegumental parenchymal cells of cercariae of S. mansoni. IR to met-enkephalin was present in cells of the cercarial embryos and in undifferentiated cells in developing cercariae. Trematodes are, together with cestodes, phylogenetically the oldest classes in which glutamate-like material and immunopositivity to a number of neuropeptides isolated from invertebrates has been demonstrated. The results are discussed in relation to immunocytochemical data obtained for other platyhelminths, to endogenous functions of the immunopositive materials, and to their possible role in parasite–host interactions.