In order to build complex language from perceptual input, children must have access to a powerful information processing system that can analyze, store, and use regularities in the signal to which the child is exposed. In this article, we propose that one of the most important parts of this underlying machinery is the linked set of cognitive and language processing components that comprise the child's developing working memory (WM). To examine this hypothesis, we explore how variations in the timing, quality, and quantity of language input during the earliest stages of development are related to variations in WM, especially phonological WM (PWM), and in turn language learning outcomes. In order to tease apart the relationships between early language experience, WM, and language development, we review research findings from studies of groups of language learners who clearly differ with respect to these aspects of input. Specifically, we consider the development of PWM in children with delayed exposure to language, that is, children born profoundly deaf and exposed to oral language following cochlear implantation and internationally adopted children who have delayed exposed to the adoption language; children who experience impoverished language input, that is, children who experience early bouts of otitis media and signing deaf children born to nonsigning hearing parents; and children with enriched early language input, that is, simultaneous bilinguals and second language learners.