We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure [email protected]
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We study the structure of infinite discrete sets D definable in expansions of ordered Abelian groups whose theories are strong and definably complete, with a particular emphasis on the set $D'$ comprised of differences between successive elements. In particular, if the burden of the structure is at most n, then the result of applying the operation $D \mapsto D'\ n$ times must be a finite set (Theorem 1.1). In the case when the structure is densely ordered and has burden $2$, we show that any definable unary discrete set must be definable in some elementary extension of the structure $\langle \mathbb{R}; <, +, \mathbb{Z} \rangle $ (Theorem 1.3).
In this paper we study elimination of imaginaries in some classes of pure ordered abelian groups. For the class of ordered abelian groups with bounded regular rank (equivalently with finite spines) we obtain weak elimination of imaginaries once we add sorts for the quotient groups $\Gamma /\Delta $ for each definable convex subgroup $\Delta $, and sorts for the quotient groups $\Gamma /(\Delta + \ell \Gamma )$ where $\Delta $ is a definable convex subgroup and $\ell \in \mathbb {N}_{\geq 2}$. We refer to these sorts as the quotient sorts. For the dp-minimal case we obtain a complete elimination of imaginaries if we also add constants to distinguish the cosets of $\ell \Gamma $ in $\Gamma $, where $\ell \in \mathbb {N}_{\geq 2}$.
Given a Henselian valuation, we study its definability (with and without parameters) by examining conditions on the value group. We show that any Henselian valuation whose value group is not closed in its divisible hull is definable in the language of rings, using one parameter. Thereby we strengthen known definability results. Moreover, we show that in this case, one parameter is optimal in the sense that one cannot obtain definability without parameters. To this end, we present a construction method for a t-Henselian non-Henselian ordered field elementarily equivalent to a Henselian field with a specified value group.
In [16], the algebraico-tree-theoretic simplicity hierarchical structure of J. H. Conway’s ordered field ${\bf{No}}$ of surreal numbers was brought to the fore and employed to provide necessary and sufficient conditions for an ordered field to be isomorphic to an initial subfield of ${\bf{No}}$, i.e., a subfield of ${\bf{No}}$ that is an initial subtree of ${\bf{No}}$. In this sequel to [16], analogous results for ordered abelian groups and ordered domains are established which in turn are employed to characterize the convex subgroups and convex subdomains of initial subfields of ${\bf{No}}$ that are themselves initial. It is further shown that an initial subdomain of ${\bf{No}}$ is discrete if and only if it is a subdomain of ${\bf{No}}$’s canonical integer part ${\bf{Oz}}$ of omnific integers. Finally, making use of class models the results of [16] are extended by showing that the theories of nontrivial divisible ordered abelian groups and real-closed ordered fields are the sole theories of nontrivial densely ordered abelian groups and ordered fields all of whose models are isomorphic to initial subgroups and initial subfields of ${\bf{No}}$.
We study the model theory of fields k carrying a henselian valuation with real closed residue field. We give a criteria for elementary equivalence and elementary inclusion of such fields involving the value group of a not necessarily definable valuation. This allows us to translate theories of such fields to theories of ordered abelian groups, and we study the properties of this translation. We also characterize the first-order definable convex subgroups of a given ordered abelian group and prove that the definable real valuation rings of k are in correspondence with the definable convex subgroups of the value group of a certain real valuation of k.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.