Numerical analyses of Trypanozoon taxonomy are presented, based on the isoenzyme data of Stevens et al. (1992). The previous study used a reduced range of enzymes compared with earlier work; the analyses indicate the value of this rationalized system. Both recently isolated trypanosome stocks and previously studied populations were included, allowing detailed comparison with earlier studies. Relationships between zymodemes were calculated with an improved similarity coefficient program, using Jaccard's coefficient (1908), and by Nei's method (1972). Dendrograms were constructed from the matrices produced with the group-average method. The groupings produced by both numerical methods were in close agreement, and the clusters of related principal zymodemes largely matched the species, subspecies and strain groups proposed by previous workers. Trypanozoon biochemical taxonomy is reviewed and the groupings reinforced by this study are: the mainly East African strain groups, busoga, zambezi, kakumbi, kiboko and sindo; T.b. gambiense and the bouaflé strain group from West Africa, and T. evansi; an intermediate bouaflé/busoga group was also recognized.