Phase characterization with selected area electron diffraction (SAED) represents a significant challenge when the pattern contains a substantial number of diffraction spots arranged in concentric but incomplete rings. This is a common situation when the crystallites are neither large enough to form a single crystal pattern nor sufficiently small and numerous to form continuous Debye-Scherrer rings. In such circumstances, it is often extremely difficult to distinguish between reflections belonging to a specific phase or to identify reflections that originate from secondary phases. To facilitate the process of phase identification for these kinds of multiphase samples, a macro script with the recursive acronym FINDS (FINDS Identifies Non-matrix Diffraction Spots) was developed on the ImageJ/FIJI platform. The program allows the user to mark diffraction spots of known phases by superimposed rings, making it easy to identify and address additional reflections between them. In addition to the full functionality of calculating and plotting the diffraction ring patterns of the known phases in different styles and colors, FINDS also provides tools for locating spot positions and determining the corresponding d-values of the reflections of interest. The effectiveness of this approach and of the developed program in assisting the process of phase identification with SAED patterns of multiphase samples is demonstrated by two representative examples. The macro code of FINDS is published under GNU General Public License v3.0 or later at https://doi.org/10.5281/zenodo.13748483.