We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure [email protected]
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We introduce a Morse theory for posets of Bestvina–Brady type combining matchings and height functions. This theory generalizes Forman's discrete Morse theory for regular CW-complexes and extends previous results on Morse theory for $h$-regular posets to all finite posets. We also develop a relative version of Morse theory which allows us to compare the topology of a poset with that of a given subposet.
Let
$G=(S,T,E)$
be a bipartite graph. For a matching
$M$
of
$G$
, let
$V(M)$
be the set of vertices covered by
$M$
, and let
$B(M)$
be the symmetric difference of
$V(M)$
and
$S$
. We prove that if
$M$
is a uniform random matching of
$G$
, then
$B(M)$
satisfies the BK inequality for increasing events.
The $q$-semicircular distribution is a probability law that interpolates between the Gaussian law and the semicircular law. There is a combinatorial interpretation of its moments in terms of matchings, where $q$ follows the number of crossings, whereas for the free cumulants one has to restrict the enumeration to connected matchings. The purpose of this article is to describe combinatorial properties of the classical cumulants. We show that like the free cumulants, they are obtained by an enumeration of connected matchings, the weight being now an evaluation of the Tutte polynomial of a so-called crossing graph. The case $q=0$ of these cumulants was studied by Lassalle using symmetric functions and hypergeometric series. We show that the underlying combinatorics is explained through the theory of heaps, which is Viennot's geometric interpretation of the Cartier–Foata monoid. This method also gives a general formula for the cumulants in terms of free cumulants.
Let CKDT be the assertion that for every countably infinite bipartite graph G, there exist a vertex covering C of G and a matching M in G such that C consists of exactly one vertex from each edge in M. (This is a theorem of Podewski and Stefifens [12].) Let ATR0 be the subsystem of second-order arithmetic with arithmetical transfinite recursion and restricted induction. Let RCA0 be the subsystem of second-order arithmetic with recursive comprehension and restricted induction. We show that CKDT is provable in ATR0. Combining this with a result of Aharoni, Magidor, and Shore [2], we see that CKDT is logically equivalent to the axioms of ATR0, the equivalence being provable in RCA0.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.