Angiostrongylus cantonensis causes a form of parasitic meningitis in humans. Albendazole (ABZ) kills nematode larvae in the brain. However, dead larvae can trigger a severe inflammatory response, resulting in brain damage. Accumulating evidence suggests that calycosin represents a potential anti-inflammatory therapeutic candidate. In this study, we investigated the combined effects of ABZ and calycosin in angiostrongyliasis caused by A. cantonensis in BALB/c mice. Inflammatory mediators (such as phospho-nuclear factor-κB, cyclooxygenase-2, matrix metalloproteinase-9, tumour necrosis factor-α and interleukin-1β) are associated with the development of meningitis and immune inflammatory reactions. We found that A. cantonensis significantly induces inflammatory mediator production and increases the blood–brain barrier (BBB) permeability. However, co-administration of both ABZ and calycosin markedly suppressed meningitis and inflammatory mediator production and decreased the BBB permeability compared to treatment with a single drug. Furthermore, calycosin and ABZ plus calycosin treatment facilitated production of the antioxidant haem oxygenase-1 (HO-1). Moreover, co-therapy with ABZ and calycosin failed to mitigate angiostrongyliasis in the presence of tin-protoporphyrin IX, an HO-1-specific inhibitor. This finding suggests that the beneficial effects of ABZ plus calycosin treatment on the regulation of inflammation are mediated by the modulation of HO-1 activation. The present results provide new insights into the treatment of human angiostrongyliasis using co-therapy with ABZ and calycosin.