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Abstract

Angiostrongylus cantonensis causes a form of parasitic meningitis in humans. Albendazole
(ABZ) kills nematode larvae in the brain. However, dead larvae can trigger a severe inflam-
matory response, resulting in brain damage. Accumulating evidence suggests that calycosin
represents a potential anti-inflammatory therapeutic candidate. In this study, we investigated
the combined effects of ABZ and calycosin in angiostrongyliasis caused by A. cantonensis in
BALB/c mice. Inflammatory mediators (such as phospho-nuclear factor-xB, cyclooxygenase-
2, matrix metalloproteinase-9, tumour necrosis factor-a and interleukin-1f) are associated
with the development of meningitis and immune inflammatory reactions. We found that
A. cantonensis significantly induces inflammatory mediator production and increases the
blood-brain barrier (BBB) permeability. However, co-administration of both ABZ and caly-
cosin markedly suppressed meningitis and inflammatory mediator production and decreased
the BBB permeability compared to treatment with a single drug. Furthermore, calycosin and
ABZ plus calycosin treatment facilitated production of the antioxidant haem oxygenase-1
(HO-1). Moreover, co-therapy with ABZ and calycosin failed to mitigate angiostrongyliasis
in the presence of tin-protoporphyrin IX, an HO-1-specific inhibitor. This finding suggests
that the beneficial effects of ABZ plus calycosin treatment on the regulation of inflammation
are mediated by the modulation of HO-1 activation. The present results provide new insights
into the treatment of human angiostrongyliasis using co-therapy with ABZ and calycosin.

Introduction

The mature adults of Angiostrongylus cantonensis are zoonotic nematodes that thrive in the
pulmonary arteries of rats. Non-permissive hosts, such as humans, may unintentionally ingest
third-stage (L3) nematode larvae through food, such as snails, slugs or raw or undercooked
vegetables (Alto, 2001). Angiostrongylus cantonensis causes angiostrongyliasis, which is
characterized by severe central nervous system (CNS) inflammation, eosinophilic meningitis
and eosinophilic meningoencephalitis (Hsu et al, 1990; Ismail and Arsura, 1993; Alto,
2001). The parasite has been found to infect humans and other mammals, with a wide and
ever-increasing distribution across regions such as East Asia, Southeast Asia, the Pacific
Islands and the Caribbean (Wang et al., 2018). Worldwide, A. cantonensis infection cases
occur every year. According to a review published in 2008, nearly 3000 cases of human angios-
trongyliasis have been documented worldwide (Wang et al., 2008). However, this number has
risen rapidly in recent years. In a prospective descriptive study conducted from June 2008 to
January 2014 in a Vietnamese hospital, A. cantonensis was found to be an important cause of
eosinophilic meningitis, accounting for 67.3% (37/55) of the cases (McBride et al, 2017).
These outbreaks have caused great concern regarding the treatment for A. cantonensis
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infection among the general public. Therefore, research on A. can-
tonensis is crucial and of significant socioeconomic importance
globally. Thus, identifying a new strategy to suppress A.
cantonensis-mediated CNS inflammation, eosinophilic meningitis
and eosinophilic meningoencephalitis is critical.

Many inflammatory mediators are linked to several inflamma-
tory diseases, including CNS inflammation. Previous studies have
demonstrated that the inflammatory mediators cyclooxygenase-2
(COX-2) (Crofford, 1997), tumour necrosis factor-a (TNF-a)
(Vassalli, 1992), interleukin-18 (IL-18) (McAfoose and Baune,
2009), matrix metalloproteinase-9 (MMP-9) (Stamenkovic,
2003) and nuclear factor (NF)-xB (Kaltschmidt et al., 2005) are
expressed at low levels under normal physiological conditions
and are highly induced in response to inflammation or patho-
logical processes. Moreover, an increasing number of studies
have revealed that TNF-¢, IL-18 (Tu and Lai, 2006), MMP-9
(Chen et al,, 2004) and NF-xB (Chiu and Lai, 2013) may partici-
pate in the pathogenesis of CNS inflammation during A. canto-
nensis infection.

Calycosin represents the major isoflavonoid in Huang Qi
(Radix Astragali Mongolici), a traditional Chinese herbal medi-
cine (Li et al.,, 2011). Calycosin can exhibit anti-inflammatory
mediator- or cytokine-like activity, including decrease in the
COX-2, IL-15 and TNF-q, as well as mediates NF-xB signalling
(Hoo et al., 2010; Su et al., 2016; Dong et al., 2018). However,
no study has delineated the potential of calycosin in
A. cantonensis-induced CNS inflammation. With this in mind,
the current study was carried out to explore whether calycosin
could ameliorate A. cantonensis-induced CNS inflammation and
eosinophilic meningitis and thereby ascertain the underlying
mechanisms.

Materials and methods
Chemical reagents and antibodies

The antibodies used in this study were anti-MMP-9,
anti-phospho-NF-xB (p-P65), anti-COX-2 and anti-B-actin
(Santa Cruz Biotechnology Inc., CA, USA). Haem oxygenase-1
(HO-1) was obtained from Abclonal Company, Inc. (MA,
USA). Albendazole (ABZ), an anthelmintic or anti-worm medica-
tion, and calycosin were purchased from Sigma-Aldrich
(St. Louis, MO, USA). Tin-protoporphyrin IX (SnPPIX) was pur-
chased from Cayman Chemical (Ann Arbor, Michigan, USA).
ABZ was dissolved in a normal saline solution. Calycosin and
SnPPIX were dissolved in dimethyl sulphoxide and administered
to the animals at a final concentration of <0.1%.

Experimental animals

We used 5-week-old male BALB/c mice to establish the A.
cantonensis-infected mouse model. The mice were purchased
from the National Laboratory Animal Center (Taipei, Taiwan)
and housed under a 12 h light and dark cycle with free access
to water and food.

Animal infection protocol

The third-stage larvae (L3, infective larvae) of A. cantonensis were
obtained from naturally infected giant African snails (Achatina
fulica) that were purchased from Heping District (Taichung,
Taiwan) (Chin et al, 2018). The larvae were liberated from the
minced snail tissues by pepsin (Sigma, USA) digestion. The iden-
tity of the L3 larvae of A. cantonensis was confirmed as described
earlier (Ash, 1970). To assess whether the larvae found were A.
cantonensis, we fed them to rats and then examined the rat brains
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after 2-3 weeks for evidence of infection. In this study, food and
water were prohibited for 12h before infection. Thirty male
BALB/c mice were randomly allocated to 6 groups (control, and
days 6, 12, 18, 24 and 30) of 5 mice each. Mice in the 5 experi-
mental groups (days 6, 12, 18, 24 and 30) were infected with 50
A. cantonensis larvae by oral inoculation and were sacrificed on
days 6, 12, 18, 24 or 30 post-infection (PI). Control mice received
only water and were euthanized on day 30 PL

Animal treatment

Twenty mice were randomly divided into 4 treatment groups (5
mice per group). The 4 groups were treated with ABZ (10 mg
kg™' day™!, oral administration), calycosin (30 mgkg™' day~’,
intraperitoneal administration), ABZ (10 mgkg™'day™', oral
administration) combined with calycosin (30 mgkg™' day™,
intraperitoneal administration) and SnPPIX (15mgkg ' day ™",
intraperitoneal ~ administration)  combined = with  ABZ
(10 mgkg_l day_l, oral administration) and calycosin (30 mg
kg~' day', intraperitoneal administration), respectively, for 19
consecutive days. Drug administration was initiated on days 6-
24 after infection. All mice were killed 25 days after inoculation.

Brain and blood sample collection

The brains were dissected, placed in powdered dry ice and stored
at —80 °C. Coronal sections (20 um) at the level of the striatum
were cut on a cryostat at —18 °C, collected on glass slides coated
with Vectabond (Vector Labs, Newark, CA, United States) and
stored at —80 °C until immunostaining. All brain tissue extracts
from each group were obtained by homogenizing in a lysis buffer
(0.05M Tris-HCI, pH 7.4, 0.15M NaCl, 0.25% deoxycholic acid,
1% NP-40, 1 mm EDTA) containing the following protease inhi-
bitors: 0.1 mm PMSF, 10 um sodium orthovanadate and 20 ug
mL™" leupeptin at a ratio of 100 mg tissuemL™" lysis buffer.
The homogenates were placed on ice and centrifuged at 10 000
g (for 30 min at 4 °C). The supernatants were collected and stored
at —80 °C for further experiments.

Western blotting

Western blotting analyses were carried out as previously
described, with slight modifications (Chin et al., 2018; Lin
et al., 2019; Liu et al., 2020; Chang et al., 2021). Protein concen-
trations in the homogenates were then determined using the
Bradford assay (Bio-Rad, Hercules, CA, USA). Thereafter, the
protein samples were separated by 10% sodium dodecyl sulphate-
polyacrylamide gel electrophoresis. The resolved proteins were
transferred to polyvinylidene fluoride membranes (Merck
Millipore, MA, USA). The membranes were blocked with 5%
defatted milk in phosphate-buffered saline (PBS) (pH 7.4) and
then exposed to the appropriate antibodies. All bands were visua-
lized with horseradish peroxidase-conjugated secondary anti-
bodies (Santa Cruz Biotechnology, California, USA) using an
enhanced chemiluminescence system (Merck Millipore, MA,
USA).

Enzyme-linked immunosorbent assay

TNF-a and IL-1f levels were measured using TNF-a (ab100785)
and IL-18 (ab100768) enzyme-linked immunosorbent assay
(ELISA) kits (Abcam, MA, USA), respectively, in accordance
with the manufacturer’s protocol. Fluorescence was measured
on a microplate reader at excitation/emission wavelengths of
488/535 nm. ELISA was performed as described previously with
slight modifications (Lu et al., 2022).
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Worm recovery

For larval recovery, the brain of each mouse was dissected into
small pieces and homogenized separately in 15mL of 0.25%
sodium citrate in PBS, followed by centrifugation (1400 g,
10 min). Larvae were counted by visualizing at 25X magnification
using a dissection microscope as described previously (Chen et al.,
2022).

Histology

Mouse brains were immediately removed and fixed in 10%
neutral-buffered formalin for 24 h. The fixed brains were dehy-
drated in a graded ethanol series (50, 75, 95 and 100%), replaced
with xylene, and embedded in paraffin at 55 °C for 24 h. Several
serial sections were cut at 10 um thickness and stained with
haematoxylin and eosin (Muto, Japan). Pathological changes
were examined under a microscope (CKX53; Olympus, Tokyo,
Japan).
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Blood-brain barrier permeability assay

Two hours before sacrifice, mice were injected with 2% Evans blue
solution prepared in saline (100 mgkg™' body weight; Sigma,
St. Louis, MO, USA) into the tail vein. The concentration of
Evans blue in the brain was determined as described previously,
with slight modifications (Chiu and Lai, 2013), to assess blood-
brain barrier (BBB) permeability. The average concentration of
Evans blue in the cerebrospinal fluid (CSF) was calculated by
measuring absorbance of the CSF at 620 nm using a spectropho-
tometer (Hitachi U3000; Tokyo, Japan).

Statistical analysis

Statistical analyses were performed by multiple comparisons that
were accessed through one-way analysis of variance and using
SigmaPlot software (version 10.0; Systat Software Inc., San Jose,
CA, USA) with GraphPad Prism 8. Comparisons between 2 groups
were performed using the Student’s t-test. In all tests, a value of *P
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Fig. 2. Protein levels of p-NF-xB, MMP-9, COX-2 and HO-1 in the
brain of mice. (A) p-NF-xB, MMP-9, COX-2 and HO-1 bands were
detected for all treatment groups. (B) *P<0.05 and
**P<0.01 indicate the significant difference. Data are presented
as meanzs.o. of 3 independent experiments. Ctrl, control
group; Infected, A. cantonensis infection group; ABZ, albendazole
treatment group; Caly, calycosin treatment group; ABZ + Caly,
albendazole combined with calycosin treatment group.

COX-2/p-actin ratios

<0.05 was considered statistically significant, while **P < 0.01 and
***P < 0.001 indicated increased statistical significance.

Results

Time-course studies of MMP-9, COX-2, p-NF-xB and HO-1 levels
from the brains of mice infected with A. cantonensis

The inflammatory mediators MMP-9, COX-2 and p-NF-xB are
associated with brain inflammation. Therefore, we examined the
protein levels of MMP-9, COX-2 and p-NF-«B after A. cantonen-
sis infection in a time-dependent manner. Time-course studies for
MMP-9 level showed significant increases (P < 0.05) from day 10
to day 25. Furthermore, COX-2 and p-NF-«B levels significantly
increased (P < 0.05) from day 6 to day 30 (Fig. 1A).
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HO-1/f-actin ratios

HO-1 is a cytoprotective enzyme that responds to oxidative
and inflammatory stimuli. Therefore, we examined the expression
of HO-1 after A. cantonensis infection in a time-dependent man-
ner through western blotting. HO-1 levels were significantly
increased (P <0.05) from day 6 to day 30 (Fig. 1B). The results
from 3 repeated and separate experiments were similar.

Effects of ABZ combined with calycosin from the brain of mice
infected with A. cantonensis infection

To assess the effects of ABZ, calycosin and ABZ combined with
calycosin treatment, we detected changes in the protein levels of
MMP-9, COX-2 and p-NF-xB using western blotting. The results
showed that MMP-9, COX-2 and p-NF-xB levels were signifi-
cantly increased in the infection groups compared to the control
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Fig. 3. Levels of larval recovery, Evans blue, TNF-a and IL-1/3. Larval recovery (A), Evans blue (B), TNF-a (C) and IL-1/3 (D) were detected in all treatment groups. *P <
0.05, **P<0.01 and ***P <0.001 indicate the significant difference. Data are presented as mean +s.o. of 3 independent experiments. Ctrl, control group; Infected, A.
cantonensis infection group; ABZ, albendazole treatment group; Caly, calycosin treatment group; ABZ + Caly, albendazole combined with calycosin treatment

group.

group. Nevertheless, MMP-9, COX-2 and p-NF-«kB levels were
significantly lower in the ABZ, calycosin and ABZ combined
with calycosin treatment groups, particularly in the ABZ com-
bined with calycosin treatment group, compared with the A.
cantonensis-infected mice (Fig. 2A and B). Moreover, HO-1
expression was moderately increased in the infection and
ABZ-only treatment groups compared to the control and signifi-
cantly increased under calycosin or ABZ combined with calycosin
treatment compared to the control, infection and ABZ-only treat-
ment groups (Fig. 2C). The results from 3 repeated and separate
experiments were similar.

Changes in larvae recovery, Evans blue units, TNF-o. and IL-18
from the brain of mice treated with ABZ alone or ABZ
combined with calycosin caused by A. cantonensis infection

Larval recovery was significantly increased in infected mice treated
with calycosin alone but decreased in ABZ-alone or ABZ~calycosin
co-treatment (Fig. 3A). Moreover, BBB permeability was enhanced
in mice with eosinophilic meningitis or meningoencephalitis,
which may result from A. cantonensis infection, and was detected
by performing Evans blue extravasation assay during A. cantonensis
infection (Fig. 3B). Additionally, TNF-a and IL-15 are key
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proinflammatory cytokines in inflammatory diseases (Turner
et al., 2014). Therefore, we also assessed the levels of TNF-a
(Fig. 3C) and IL-173 (Fig. 3D) in a time-dependent manner, follow-
ing A. cantonensis infection, using ELISA. The results demon-
strated that Evans blue, TNF-or and IL-1f levels were significantly
increased in the infection groups compared to the control group.
Moreover, Evans blue, TNF-a and IL-18 levels were significantly
decreased in the ABZ, calycosin and ABZ plus calycosin treatment
groups, especially in the ABZ plus calycosin treatment group, com-
pared with the A. cantonensis-infected mice. The results from 3
repeated and separate experiments were consistent.

Changes in MMP-9, COX-2, p-NF-xB, HO-1 and B-actin protein
levels in the brains of mice treated with ABZ combined with
calycosin or SnPPIX caused by A. cantonensis infection

To confirm the protective effects of HO-1, we performed add-
itional experiments to assess the effect of SnPPIX, a potent com-
petitive inhibitor of HO-1 (Hyvelin et al, 2010). The protein
levels of MMP-9, COX-2 and p-NF-«B in the treated groups
were similar to those observed in Fig. 2. The levels of MMP-9,
COX-2 and p-NF-«B were significantly increased and HO-1 levels
were moderately increased in the infection groups; however,
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MMP-9, COX-2 and p-NF-xB levels were significantly decreased
and HO-1 levels were significantly increased in the ABZ plus caly-
cosin treatment groups. Additionally, co-treatment with SnPPIX,
ABZ and calycosin reversed the effects of ABZ plus calycosin
treatment, i.e. increased MMP-9, COX-2 or p-NF-xB and
decreased HO-1 expression (Fig. 4). The results from 3 repeated
and separate experiments were similar.

Changes in larval recovery, Evans blue, TNF-o. and IL-1j levels
after treatment with ABZ alone or ABZ-calycosin in the brains
of mice during A. cantonensis infection

To confirm the inhibitory effect of SnPPIX on HO-1 activity, we
assessed the larval recovery, Evans blue, TNF-a and IL-1f levels.
Larval recovery was significantly increased in infected mice

https://doi.org/10.1017/S0031182022001408 Published online by Cambridge University Press

treated with calycosin alone but decreased in ABZ-alone or
ABZ-calycosin co-treatment groups.

In contrast, larval recovery was decreased by ABZ-calycosin or
SnPPIX-ABZ-calycosin co-treatment (Fig. 5A). The Evans blue
units (Fig. 5B), TNF-a (Fig. 5C) and IL-13 (Fig. 5D) levels were
significantly increased in the infection groups compared with
the control group; however, their levels were significantly
decreased in the ABZ plus calycosin treatment group.
Furthermore, co-treatment with SnPPIX, ABZ and calycosin
reversed the effects of ABZ and calycosin. The results from the
3 repeated and separate experiments were similar.

Histopathological examinations

Optical microscopic examination of tissues stained with haema-
toxylin and eosin showed that eosinophilic meningitis was
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Fig. 5. Levels of larval recovery, Evans blue, TNF-a and IL-1p. Larval recovery (A), Evans blue (B), TNF-a (C) and IL-13 (D) were detected for all treatment groups. *P <
0.05 and **P <0.01 indicate the significant difference. Data are presented as mean +s.o. of 3 independent experiments. Ctrl, control group; Infected, A. cantonensis
infection group; ABZ, albendazole treatment group; Caly, calycosin treatment group; ABZ + Caly, albendazole combined with calycosin treatment group.

induced in the infected groups. The results demonstrated severe
haemorrhage, severe thickening of the meninges and large-scale
infiltration of the subarachnoid space by leucocytes in
A. cantonensis-infected mouse brain tissues compared to normal
controls. Haemorrhage, meningeal thickness and leucocyte infil-
tration were moderately reduced by the individual treatment
with ABZ or calycosin. However, ABZ in combination with caly-
cosin showed a marked reduction in haemorrhage, meningeal
thickness and leucocyte number. In addition, co-treatment with
SnPPIX, ABZ and calycosin reversed the effects of ABZ and caly-
cosin (Fig. 6).

Discussion

Angiostrongylus cantonensis causes eosinophilic meningitis in
mice that attains a peak at approximately 3 weeks. In parallel
with this pathogenesis, infected mice show signs of a gradual
increase in inflammation, attaining a peak at the same time
(Sugaya and Yoshimura, 1988; Sasaki et al., 1993). Previous stud-
ies have shown that TNF-¢, IL-18 (Tu and Lai, 2006), MMP-9
(Chen et al, 2004), COX-2 (Chen et al, 2021) and NF-xB
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(Chiu and Lai, 2013) may participate in the pathogenesis of
CNS inflammation during A. cantonensis infection. In this
study, significant increases in TNF-a, IL-18, MMP-9, COX-2
and p-NF-«kB levels in brain samples from mice infected with
A. cantonensis were demonstrated in a time-dependent manner.
In contrast, levels of these inflammatory enzymes decreased in
response to treatment with ABZ, a broad-spectrum anthelmintic.

Calycosin is an isoflavonoid and a major bioactive chemical in
Huang Qi (Li et al., 2011). Furthermore, calycosin can exert neu-
roprotective and anti-inflammatory effects (Su et al, 2016; Lu
et al., 2022) and reduce cellular oxidative damage (Guo et al.,
2002; Lu et al., 2022). Likewise, our results revealed that calycosin
protected mice against A. cantonensis-induced inflammation and
reduced the production of inflammatory enzymes. However, its
therapeutic effects could not completely suppress the
A. cantonensis-induced inflammation, probably owing to the per-
sistence of the parasites even after treatment.

ABZ kills parasites such as the nematode A. cantonensis by
blocking the absorption of glucose by the larvae (Hwang and
Chen, 1988; Lakwo et al., 1998). Thus far, the drug has shown
good results for the treatment of angiostrongyliasis (Hwang and
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Fig. 6. Pathological morphology of the subarachnoid space in mice evaluated using haematoxylin and eosin staining. (A) Control group (Ctrl). (B) Angiostrongylus
cantonensis infection group (Infected). (C) Albendazole treatment group (ABZ). (D) Calycosin treatment group (Caly). (E) Albendazole combined with calycosin treat-
ment group (ABZ + Caly). (F) SnPPIX and albendazole combined with calycosin treatment group (SnPPIX +ABZ + Caly).

Chen, 1991). ABZ exhibits marked larvicidal activity against
angiostrongyliasis. However, certain studies have revealed that
ABZ and mebendazole are not recommended for angiostrongylia-
sis treatment because they may exacerbate the neurological symp-
toms as a side-effect (Hidelaratchi et al., 2005; Wang et al., 2006;
Wan et al., 2018). Additionally, treatment with ABZ alone in
eosinophilic meningitis cannot completely inhibit the inflamma-
tory reaction (Lan et al, 2004). Thus, treatment usually involves
co-administration of corticosteroids to limit the inflammatory
reaction (Chotmongkol et al, 2006, 2009; Diao et al., 2011).
Corticosteroids have been used for a long time in the clinic and
have played a useful role in suppressing inflammation in the
brain. However, steroids have side-effects such as infection
(immunodepression), gastrointestinal symptoms, osteoporosis,
weight gain and steroid withdrawal syndrome (Prociv and
Turner, 2018; McAuliffe et al., 2019). To increase the survival
rate and quality of treatment, it may be helpful to replace steroids
with other anti-neuroinflammatory agents. Therefore, the present
study focused on the evaluation of calycosin. The application of
combination therapy with ABZ and calycosin is a prudent course
of action. This combination therapy effectively suppressed
excessive inflammation compared to treatment with calycosin or
ABZ alone.

HO represents a class of microsomal enzymes that includes
HO-1, HO-2 and HO-3. HO degrades the prooxidant haem to
carbon monoxide, biliverdin (subsequently reduced to bilirubin)
and ferrous iron (Maines, 1997; Turkseven et al., 2005). HO-1
activity is significantly induced by numerous stimuli, including
haem, heavy metals, hormones, oxidative stress (Platt and Nath,
1998; Novotny and Vitek, 2003; Lu et al., 2022) and traumatic
brain injury (Okubo et al, 2013). HO-1 induction has been
shown to confer protection, whereas its abrogation has been
revealed to accelerate cellular injuries (Akagi et al, 2002).
Additionally, HO-1 modulates brain inflammation and apoptosis
in mice with angiostrongyliasis (Chen et al., 2022). Our results
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indicated that HO-1 level was slightly increased in the A. canto-
nensis infection and ABZ treatment groups. Moreover,
co-treatment with ABZ and calycosin suppressed the expression
of inflammatory cytokines and A. cantonensis-induced inflamma-
tion and significantly upregulated HO-1 expression, indicating
that HO-1 may play a crucial role in the progression of A.
cantonensis-induced inflammation. To better understand the
role of HO-1 induced by calycosin, A. cantonensis-infected mice
were pre-treated with SnPPIX, a well-characterized HO-1 inhibi-
tor. Our results demonstrated that, with the combination of
SnPPIX and ABZ-calycosin treatment, SnPPIX reversed the
ABZ-calycosin-induced upregulation of expression of HO-1 and
inflammatory cytokines in A. cantonensis-infected mice. This
finding suggests that calycosin may act as an HO-1 activator
that upregulates and maintains HO-1 expression after A. canto-
nensis infection. These results indicate that modulation of HO-1
and NF-xB activation after calycosin treatment protects against
inflammation in A. cantonensis-infected mice. However, the role
of calycosin in A. cantonensis-infected mice remains unclear.
As the current study was limited to in vivo systems, future work
is required to evaluate the in vitro effects and molecular mechan-
isms of calycosin.

Conclusions

Our study is the first to show that calycosin exerts anti-
inflammatory effects in A. cantonensis-infected mice. The results
provide evidence that ABZ-calycosin co-treatment effectively
suppresses inflammatory mediator production and eosinophilic
meningitis through the modulation of HO-1 and NF-xB activity,
suggesting that the combination therapy with ABZ and calycosin
may also reduce the side-effects of ABZ. Our study lays forth a
probable explanation for the beneficial effect of calycosin in the
prevention of eosinophilic meningitis caused by A. cantonensis.
This study was limited to the finding that calycosin attenuates
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A. cantonensis-induced parasitic meningitis through modulation
of HO-1 and NF-xB activation. Future work is required to evalu-
ate the detailed underlying molecular mechanisms linked to the
therapeutic efficacy of combination therapy to improve anti-
parasitic meningitis effects.
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