We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure [email protected]
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We show that the Hausdorff dimension of any slice of the graph of the Takagi function is bounded above by the Assouad dimension of the graph minus one, and that the bound is sharp. The result is deduced from a statement on more general self-affine sets, which is of independent interest. We also prove that Marstrand’s slicing theorem on the graph of the Takagi function extends to all slices if and only if the upper pointwise dimension of every projection of the length measure on the x-axis lifted to the graph is at least one.
In this paper, we study the dimension of planar self-affine sets, of which generating iterated function system (IFS) contains non-invertible affine mappings. We show that under a certain separation condition the dimension equals to the affinity dimension for a typical choice of the linear-parts of the non-invertible mappings, furthermore, we show that the dimension is strictly smaller than the affinity dimension for certain choices of parameters.
Motivated by near-identical graphs of two increasing continuous functions—one related to Zaremba’s conjecture and the other due to Salem—we provide an explicit connection between fractals and regular sequences by showing that the graphs of ghost distributions, the distribution functions of measures associated to regular sequences, are sections of self-affine sets. Additionally, we provide a sufficient condition for such measures to be purely singular continuous. As a corollary, and analogous to Salem’s strictly increasing singular continuous function, we show that the ghost distributions of the Zaremba sequences are singular continuous.
We prove that certain families of homogenous affine iterated function systems in $\mathbb {R}^{d}$ have the property that the open set condition and the existence of exact overlaps both occur densely in the space of translation parameters. These examples demonstrate that in the theorems of Falconer and Jordan–Pollicott–Simon on the almost sure dimensions of self-affine sets and measures, the set of exceptional translation parameters can be a dense set. The proof combines results from the literature on self-affine tilings of $\mathbb {R}^{d}$ with an adaptation of a classic argument of Erdős on the singularity of certain Bernoulli convolutions. This result encompasses a one-dimensional example due to Kenyon which arises as a special case.
A classical theorem of Hutchinson asserts that if an iterated function system acts on
$\mathbb {R}^{d}$
by similitudes and satisfies the open set condition then it admits a unique self-similar measure with Hausdorff dimension equal to the dimension of the attractor. In the class of measures on the attractor, which arise as the projections of shift-invariant measures on the coding space, this self-similar measure is the unique measure of maximal dimension. In the context of affine iterated function systems it is known that there may be multiple shift-invariant measures of maximal dimension if the linear parts of the affinities share a common invariant subspace, or more generally if they preserve a finite union of proper subspaces of
$\mathbb {R}^{d}$
. In this paper we give an example where multiple invariant measures of maximal dimension exist even though the linear parts of the affinities do not preserve a finite union of proper subspaces.
In this chapter we briefly outline what we believe are some of the key questions for the future and discuss some of the challenges which this book has unearthed.We pose several open questions.
Self-affine sets are another special case of IFS attractors. Since the defining maps may contract distance by different amounts in different directions, the dimension theory of self-affine sets and measures is more complicated, and much richer, than that of self-similar sets. In this chapter we study self-affine sets in detail, paying particular attention to Bedford–McMullen carpets where our theory can be developed explicitly.
The Assouad dimension is a notion of dimension in fractal geometry that has been the subject of much interest in recent years. This book, written by a world expert on the topic, is the first thorough account of the Assouad dimension and its many variants and applications in fractal geometry and beyond. It places the theory of the Assouad dimension in context among up-to-date treatments of many key advances in fractal geometry, while also emphasising its diverse connections with areas of mathematics including number theory, dynamical systems, harmonic analysis, and probability theory. A final chapter detailing open problems and future directions for research brings readers to the cutting edge of this exciting field. This book will be an indispensable part of the modern fractal geometer's library and a valuable resource for pure mathematicians interested in the beauty and many applications of the Assouad dimension.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.