We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure [email protected]
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Bizarrely shaped voting districts are frequently lambasted as likely instances of gerrymandering. In order to systematically identify such instances, researchers have devised several tests for so-called geographic compactness (i.e. shape niceness). We demonstrate that under certain conditions, a party can gerrymander a competitive state into geographically compact districts to win an average of over 70% of the districts. Our results suggest that geometric features alone may fail to adequately combat partisan gerrymandering.
In this paper we study the Assouad dimension of graphs of certain Lévy processes and functions defined by stochastic integrals. We do this by introducing a convenient condition which guarantees a graph to have full Assouad dimension and then show that graphs of our studied processes satisfy this condition.
We show that under some slight assumptions, the positive sojourn time of a product of symmetric processes converges towards ½ as the number of processes increases. Monotony properties are then exhibited in the case of symmetric stable processes, and used, via a recurrence relation, to obtain upper and lower bounds on the moments of the occupation time (in the first and third quadrants) for two-dimensional Brownian motion. Explicit values are also given for the second and third moments in the n-dimensional Brownian case.
In this paper we obtain a recursive formula for the density of the double-barrier Parisian stopping time. We present a probabilistic proof of the formula for the first few steps of the recursion, and then a formal proof using explicit Laplace inversions. These results provide an efficient computational method for pricing double-barrier Parisian options.
We present solutions to nonzero-sum games of optimal stopping for Brownian motion in [0, 1] absorbed at either 0 or 1. The approach used is based on the double partial superharmonic characterisation of the value functions derived in Attard (2015). In this setting the characterisation of the value functions has a transparent geometrical interpretation of 'pulling two ropes' above 'two obstacles' which must, however, be constrained to pass through certain regions. This is an extension of the analogous result derived by Peskir (2009), (2012) (semiharmonic characterisation) for the value function in zero-sum games of optimal stopping. To derive the value functions we transform the game into a free-boundary problem. The latter is then solved by making use of the double smooth fit principle which was also observed in Attard (2015). Martingale arguments based on the Itô–Tanaka formula will then be used to verify that the solution to the free-boundary problem coincides with the value functions of the game and this will establish the Nash equilibrium.
We show that the expected time for a random walk on a (multi-)graph G to traverse all m edges of G, and return to its starting point, is at most 2m2; if each edge must be traversed in both directions, the bound is 3m2. Both bounds are tight and may be applied to graphs with arbitrary edge lengths. This has interesting implications for Brownian motion on certain metric spaces, including some fractals.