We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure [email protected]
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Noting a curious link between Andrews’ even-odd crank and the Stanley rank, we adopt a combinatorial approach building on the map of conjugation and continue the study of integer partitions with parts separated by parity. Our motivation is twofold. Firstly, we derive results for certain restricted partitions with even parts below odd parts. These include a Franklin-type involution proving a parametrized identity that generalizes Andrews’ bivariate generating function, and two families of Andrews–Beck type congruences. Secondly, we introduce several new subsets of partitions that are stable (i.e. invariant under conjugation) and explore their connections with three third-order mock theta functions $\omega (q)$, $\nu (q)$, and $\psi ^{(3)}(q)$, introduced by Ramanujan and Watson.
In recent years, mock theta functions in the modern sense have received great attention to seek examples of q-hypergeometric series and find their alternative representations. In this paper, we discover some new mock theta functions and express them in terms of Hecke-type double sums based on some basic hypergeometric series identities given by Z.G. Liu.
In 1991, Andrews and Hickerson established a new Bailey pair and combined it with the constant term method to prove some results related to sixth-order mock theta functions. In this paper, we study how this pair gives rise to new mock theta functions in terms of Appell–Lerch sums. Furthermore, we establish some relations between these new mock theta functions and some second-order mock theta functions. Meanwhile, we obtain an identity between a second-order and a sixth-order mock theta functions. In addition, we provide the mock theta conjectures for these new mock theta functions. Finally, we discuss the dual nature between the new mock theta functions and partial theta functions.
Using results from Ramanujan's lost notebook, Zudilin recently gave an insightful proof of a radial limit result of Folsom et al. for mock theta functions. Here we see that Mortenson's previous work on the dual nature of Appell–Lerch sums and partial theta functions and on constructing bilateral q-series with mixed mock modular behaviour is well suited for such radial limits. We present five more radial limit results, which follow from mixed mock modular bilateral q-hypergeometric series. We also obtain the mixed mock modular bilateral series for a universal mock theta function of Gordon and McIntosh. The later bilateral series can be used to compute radial limits for many classical second-, sixth-, eighth- and tenth-order mock theta functions.
Despite the presence of many famous examples, the precise interplay between basic hypergeometric series and modular forms remains a mystery. We consider this problem for canonical spaces of weight 3/2 harmonic Maass forms. Using recent work of Zwegers, we exhibit forms that have the property that their holomorphic parts arise from Lerch-type series, which in turn may be formulated in terms of the Rogers–Fine basic hypergeometric series.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.