We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure [email protected]
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
In this paper, we consider a semi-classical version of the nonhomogeneous heat equation with singular time-dependent coefficients on the lattice $\hbar \mathbb {Z}^n$. We establish the well-posedness of such Cauchy problems in the classical sense when regular coefficients are considered, and analyse how the notion of very weak solution adapts in such equations when distributional coefficients are regarded. We prove the well-posedness of both the classical and the very weak solution in the weighted spaces $\ell ^{2}_{s}(\hbar \mathbb {Z}^n)$, $s \in \mathbb {R}$, which is enough to prove the well-posedness in the space of tempered distributions $\mathcal {S}'(\hbar \mathbb {Z}^n)$. Notably, when $s=0$, we show that for $\hbar \rightarrow 0$, the classical (resp. very weak) solution of the heat equation in the Euclidean setting $\mathbb {R}^n$ is recaptured by the classical (resp. very weak) solution of it in the semi-classical setting $\hbar \mathbb {Z}^n$.
Let $(M, F, m)$ be a forward complete Finsler measure space. In this paper, we prove that any nonnegative global subsolution in $L^p(M)(p>1)$ to the heat equation on $\mathbb R^+\times M$ is uniquely determined by the initial data. Moreover, we give an $L^p(0<p\leq 1)$ Liouville-type theorem for nonnegative subsolutions u to the heat equation on $\mathbb R\times M$ by establishing the local $L^p$ mean value inequality for u on M with Ric$_N\geq -K(K\geq 0)$.
Many applications of Functional Analysis are introduced, including Least Squares Approximation Methods, the Vibrating String or Membrane (the Wave Equation), Heat Flow on a rod or plate (the Heat Equation), Gambler's Ruin and Random Walk, Sampling Theorem of Signal Processing, the Atomic Theory of Matter, Uncertainty Principle, and Wavelets. The beautiful connection between Group Theory, Fourier Series, and the Haar Integral (which for Euclidean Space, is the Lebesgue Integral) is investigated.
Andrei Agrachev, Scuola Internazionale Superiore di Studi Avanzati, Trieste,Davide Barilari, Université de Paris VII (Denis Diderot),Ugo Boscain, Centre National de la Recherche Scientifique (CNRS), Paris
In this chapter we derive the sub-Riemannian heatequation and its relation to the notion of intrinsicvolume in sub-Riemannian geometry. We then discuss(without proof) the Hörmander theorem. In the lastpart of the chapter we present an elementary methodto compute the fundamental solution of the heatequation on the Heisenberg group (the celebratedGaveau–Hulanicki formula).
The thermodynamics of irreversible processes is based on the expression of the entropy source density derived in the previous chapter. From it, phenomenological laws of transport can be presented in a unified way. Heat transport is given by Fourier’s law that leads to a heat equation in which Joule and Thomson effects can be included. It can explain thermal dephasing, heat exchangers and effusivity. Matter transport leads to the Dufour and Soret effects, which imply Fick’s law and the diffusion equation, which can be used to discuss Turing patterns and ultramicroelectrode. Transport of two types of charge carrier leads to the notion of diffusion length, giant magnetoresistance and planar Ettingshausen effect. Transport can be perpendicular to the generalised force, as in the Hall, Righi-Leduc and Nernst effects. The formalism accounts also for thermoelectric effects such as the Seebeck and Peltier effects, with which to analyse thermocouples, a Seebeck loop, adiabatic thermoelectric junctions, the Harman method of determing the ZT coefficient of a thermoelectric material and the principle of a Peltier generator.
We consider the inhomogeneous heat and Stokes equations on the half space and prove an instantaneous space-time analytic regularization result, uniformly up to the boundary of the half space.
This paper considers the Ricci flow coupled with the harmonic map flow between two manifolds. We derive estimates for the fundamental solution of the corresponding conjugate heat equation and we prove an analogue of Perelman's differential Harnack inequality. As an application, we find a connection between the entropy functional and the best constant in the Sobolev embedding theorem in ℝn.
This paper is concerned with the asymptotic behaviour of the lifespan of solutions for a semilinear heat equation with initial datum λφ(x) in hyperbolic space. The growth rates for both λ → 0 and λ → ∞ are determined.
In this paper, we propose a numerical method for solving the heat equations with
interfaces. This method uses the non-traditional finite element method together
with finite difference method to get solutions with second-order accuracy. It is
capable of dealing with matrix coefficient involving time, and the interfaces
under consideration are sharp-edged interfaces instead of smooth interfaces.
Modified Euler Method is employed to ensure the accuracy in time. More than
1.5th order accuracy is observed for solution with singularity (second
derivative blows up) on the sharp-edged interface corner. Extensive numerical
experiments illustrate the feasibility of the method.
This work studies the heat equation in a two-phase material with spherical inclusions.Under some appropriate scaling on the size, volume fraction and heat capacity of theinclusions, we derive a coupled system of partial differential equations governing theevolution of the temperature of each phase at a macroscopic level of description. Thecoupling terms describing the exchange of heat between the phases are obtained by usinghomogenization techniques originating from [D. Cioranescu, F. Murat, Collège de FranceSeminar, vol. II. Paris 1979–1980; vol. 60 of Res. Notes Math. Pitman,Boston, London (1982) 98–138].
We show that the null limit hypothesis, in the definition of a barrier, can be relaxed for normal boundary points that satisfy a mild additional condition. We also give a simple necessary and sufficient condition for the regularity of semi-singular boundary points.
In this paper, we use the adapted periodic unfolding method to study the homogenization and corrector problems for the parabolic problem in a two-component composite with ε-periodic connected inclusions. The condition imposed on the interface is that the jump of the solution is proportional to the conormal derivative via a function of order εγ with γ ≤−1. We give the homogenization results which include those obtained by Jose in [Rev. Roum. Math. Pures Appl. 54 (2009) 189–222]. We also get the corrector results.
This work is concerned with the numerical computation of null controls for the heat equation. The goal is to compute an approximation of controls that drives the solution from a prescribed initial state at t=0 to zero at t=T. In spite of the diffusion of the heat equation, recent developments indicate that this issue is difficult and still largely open. Most of the existing literature, concerned with controls of minimal L2-norm, make use of dual convex arguments and introduce backward adjoint system. In practice, the null control problem is then reduced to the minimization of a dual conjugate function with respect to the final condition of the adjoint state. As a consequence of the highly regularizing property of the heat kernel, this final condition – which may be seen as the Lagrange multiplier for the null controllability condition – does not belong to L2, but to a much larger space than can hardly be approximated by finite (discrete) dimensional basis. This phenomenon, unavoidable whatever be the numerical approximation used, strongly deteriorates the efficiency of minimization algorithms. In this work, we do not use duality arguments and in particular do not introduce any backward heat equation. For the boundary case, the approach consists first in introducing a class of functions satisfying a priori the boundary conditions in space and time, in particular the null controllability condition at time T, and then finding among this class one element satisfying the heat equation. This second step is done by minimizing a convex functional among the admissible corrector functions of the heat equation. The inner case is performed in a similar way. We present the (variational) approach, discuss the main features of it and then describe some numerical experiments highlighting the interest of the method. The method holds in any dimension but, for the sake of simplicity, we provide details in the one-space dimensional case.
This work is devoted to analyze a numerical scheme for the approximation of the linear heat equation’s controls. It is known that, due to the regularizing effect, the efficient computation of the null controls for parabolic type equations is a difficult problem. A possible cure for the bad numerical behavior of the approximating controls consists of adding a singular perturbation depending on a small parameter ε which transforms the heat equation into a wave equation. A space discretization of step h leads us to a system of ordinary differential equations. The aim of this paper is to show that there exists a sequence of exact controls of the corresponding perturbed semi-discrete systems which converges to a control of the original heat equation when both h (the mesh size) and ε (the perturbation parameter) tend to zero.
Inspired by the growing use of non linear discretization techniques for the lineardiffusion equation in industrial codes, we construct and analyze various explicit nonlinear finite volume schemes for the heat equation in dimension one. These schemes areinspired by the Le Potier’s trick [C. R. Acad. Sci. Paris, Ser. I348 (2010) 691–695]. They preserve the maximum principle and admita finite volume formulation. We provide a original functional setting for the analysis ofconvergence of such methods. In particular we show that the fourth discrete derivative isbounded in quadratic norm. Finally we construct, analyze and test a new explicit nonlinear maximum preserving scheme with third order convergence: it is optimal on numericaltests.
In this paper we study the null-controllability of an artificial advection-diffusionsystem in dimension n. Using a spectral method, we prove that the controlcost goes to zero exponentially when the viscosity vanishes and the control time is largeenough. On the other hand, we prove that the control cost tends to infinity exponentiallywhen the viscosity vanishes and the control time is small enough.
We formulate and analyze the Crank-Nicolson Hermite cubic orthogonal spline collocation method for the solution of the heat equation in one space variable with nonlocal boundary conditions involving integrals of the unknown solution over the spatial interval. Using an extension of the analysis of Douglas and Dupont [23] for Dirichlet boundary conditions, we derive optimal order error estimates in the discrete maximum norm in time and the continuous maximum norm in space. We discuss the solution of the linear system arising at each time level via the capacitance matrix technique and the package COLROW for solving almost block diagonal linear systems. We present numerical examples that confirm the theoretical global error estimates and exhibit superconvergence phenomena.
We use the heat equation as an illustrative example to show that the unified method introduced by one of the authors can be employed for constructing analytical solutions for linear evolution partial differential equations in one spatial dimension involving non-separable boundary conditions as well as non-local constraints. Furthermore, we show that for the particular case in which the boundary conditions become separable, the unified method provides an easier way for constructing the relevant classical spectral representations avoiding the classical spectral analysis approach. We note that the unified method always yields integral expressions which, in contrast to the series or integral expressions obtained by the standard transform methods, are uniformly convergent at the boundary. Thus, even for the cases that the standard transform methods can be implemented, the unified method provides alternative solution expressions which have advantages for both numerical and asymptotic considerations. The former advantage is illustrated by providing the numerical evaluation of typical boundary value problems.
We propose to extend the d’Humieres version of the lattice Boltzmann scheme to triangular meshes. We use Bravais lattices or more general lattices with the property that the degree of each internal vertex is supposed to be constant. On such meshes, it is possible to define the lattice Boltzmann scheme as a discrete particle method, without need of finite volume formulation or Delaunay-Voronoi hypothesis for the lattice. We test this idea for the heat equation and perform an asymptotic analysis with the Taylor expansion method for two schemes named D2T4 and D2T7. The results show a convergence up to second order accuracy and set new questions concerning a possible super-convergence.
We study the time-dependent heat equation on its space-time domain that is discretised by a k-spacetree. k-spacetrees are a generalisation of the octree concept and are a discretisation paradigm yielding a multiscale representation of dynamically adaptive Cartesian grids with low memory footprint. The paper presents a full approximation storage geometric multigrid implementation for this setting that combines the smoothing properties of multigrid for the equation’s elliptic operator with a multiscale solution propagation in time. While the runtime and memory overhead for tackling the all-in-one space-time problem is bounded, the holistic approach promises to exhibit a better parallel scalability than classical time stepping, adaptive dynamic refinement in space and time fall naturally into place, as well as the treatment of periodic boundary conditions of steady cycle systems, on-time computational steering is eased as the algorithm delivers guesses for the solution’s long-term behaviour immediately, and, finally, backward problems arising from the adjoint equation benefit from the the solution being available for any point in space and time.